Chaotic classical scattering and dynamics in oscillating 1-D potential wells. (English) Zbl 0988.81038

Summary: We study the motion of a classical particle interacting with one, two, and finally an infinite chain of 1-D square wells with oscillating depth. For a single well we find complicated scattering behavior even though there is no topological chaos due to the absence of hyperbolic periodic orbits. In contrast, for two coupled square wells there is chaotic scattering. The infinite oscillating chain yields the generic transition to chaos, with diffusion in energy and in space, as the separation between wells is increased. We briefly discuss the relevance of our results to solid state physics.


81Q50 Quantum chaos
81-04 Software, source code, etc. for problems pertaining to quantum theory
81U99 Quantum scattering theory
82D20 Statistical mechanics of solids
Full Text: DOI arXiv


[1] Cai, W.; Hu, P.; Zheng, T.F.; Yudanin, B.; Lax, M., Phys rev B, 41, 3513, (1990)
[2] Burmeister, G.; Maschke, K., Phys rev B, 59, 4612, (1999)
[3] Wagner, M., Phys rev B, 57, 11899, (1998)
[4] Berman, G.P.; Bulgakov, E.N.; Campbell, D.K.; Sadreev, A.F., Physica B, 225, 1, (1996)
[5] Li W, Reichl LE, Phys Rev B, to appear 1999
[6] Haake, F., Quantum signatures of chaos, (1991), Springer Berlin · Zbl 0741.58055
[7] Reichl, L.E., The transition to chaos in conservative classical systems; quantum manifestations, (1992), Springer Berlin · Zbl 0776.70003
[8] Gutzwiller, M.C., Chaos in classical and quantum mechanics, (1990), Springer New York · Zbl 0727.70029
[9] Nakamura, K., Quantum chaos:a new paradigm on non-linear dynamics, (1993), Cambridge University Press New York
[10] Chang, A.M.; Baranger, H.U.; Pfeiffer, L.N.; West, K.W., Phys rev lett, 73, 2111, (1994)
[11] Baranger HU. Physica D 83;1995:30 and references therein
[12] Marcus, C.M.; Rimberg, A.J.; Westervelt, R.M.; Hopkins, P.F.; Gossard, A.C., Phys rev lett, 69, 506, (1992)
[13] Luna-Acosta, G.A.; Krokhin, A.A.; Rodriguez, M.A.; Hernandez-Tejeda, P.H., Phys rev B, 54, 11410, (1996)
[14] Kouwenhoven, L.P.; Jauhar, S.; Orenstein, J.; McEuen, P.L.; Magamune, Y.; Motohisa, J.; Sasaki, H., Phys rev lett, 73, 3443, (1994)
[15] Blick, R.H.; Haug, R.J.; van der Weide, D.W.; von Klitzing, K.; Eberl, K., Appl phys lett, 67, 3924, (1995)
[16] Drexler, H.; Scott, J.S.; Allen, S.J.; Campman, K.L.; Gossard, A.C., Appl phys lett, 67, 2816, (1995)
[17] Cai, W.; Zheng, T.F.; Hu, P.; Yudanin, B.; Lax, M., Phys rev lett, 63, 418, (1989)
[18] Fu, Y.; Willander, M., J appl phys, 74, 3264, (1993)
[19] Rojas, F.; Cota, E., J phys: condens matter, 5, 5159, (1993)
[20] Gelfand, B.Y.; Schmitt-Rink, S.; Levi, A.F.J., Phys rev lett, 62, 1683, (1989)
[21] Sun, Q-f.; Wang, J.; Lin, T-h., Phys rev B, 58, 13007, (1998)
[22] Wagner, M., Phys rev lett, 76, 4010, (1996)
[23] Keay, B.J.; Allen, S.J.; Galán, J.; Kaminski, J.P.; Campman, K.L.; Gossard, A.C.; Bhattacharya, U.; Rodwell, M.J.W., Phys rev lett, 75, 4098, (1995)
[24] See for example, page 474 in Yu PY, Cardona M. Fundamentals of semiconductors. Second ed., Berlin: Springer, 1999
[25] Jung, C.; Jcholz, H., Math gen J phys A, 21, 2301, (1988)
[26] Tabor, M., Chaos and integrability in non-linear dynamics – an introduction, (1989), Wiley New York
[27] Wiggins, S., Introduction to applied non-linear dynamical systems and chaos, (1990), Springer New York
[28] Lichtenberg, A.J.; Lieberman, M.A., Regular and stochastic motion, (1983), Springer New York · Zbl 0506.70016
[29] For a recent review of chaotic scattering see the Special issue on Chaos, vol. 3, No. 4, see also Jung C, Richter P-H, J Phys A: Math Gen 23;1990:2847
[30] Bass, F.G.; Tetervov, A.P., Phys rep, 140, 237, (1986)
[31] Pavlovich, V.V.; Epshtein, E.M., Sov phys semiconductor, 10, 1196, (1976)
[32] Holthaus, M.; Hone, D., Phys rev B, 47, 6499, (1993)
[33] Alekseev, K.N.; Berman, G.P.; Campbell, D.K.; Cannon, E.H.; Cargo, M.C., Phys rev B, 54, 10625, (1996)
[34] Anderson, P.W., Phys rev, 109, 1492, (1958)
[35] Lee, P.A.; Ramakrishnan, T.V., Rev mod phys, 57, 287, (1985)
[36] Izrailev FM. Phys Rep 196;1990:299
[37] Mateos, J.L.; José, J.V., Physica A, 257, 434, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.