×

zbMATH — the first resource for mathematics

A matrix model for the two-dimensional black hole. (English) Zbl 0988.81099
Summary: We construct and study a matrix model that describes two-dimensional string theory in the Euclidean black hole background. A conjecture of V. Fateev, A. Zamolodchikov and Al. Zamolodchikov, relating the black hole background to condensation of vortices (winding modes around Euclidean time) plays an important role in the construction. We use the matrix model to study quantum corrections to the thermodynamics of two-dimensional black holes.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Elitzur, S.; Forge, A.; Rabinovici, E., Nucl. phys. B, 359, 581, (1991)
[2] Mandal, G.; Sengupta, A.; Wadia, S., Mod. phys. lett. A, 6, 1685, (1991)
[3] Witten, E., Phys. rev. D, 44, 314, (1991)
[4] Dijkgraaf, R.; Verlinde, E.; Verlinde, H., Nucl. phys. B, 371, 269, (1992)
[5] Horowitz, G.; Strominger, A.; Maldacena, J.; Strominger, A., Nucl. phys. B, 360, 197, (1991)
[6] Kutasov, D.; Sahakyan, D.A.
[7] Ooguri, H.; Vafa, C., Nucl. phys. B, 463, 55, (1996)
[8] Giveon, A.; Kutasov, D.; Pelc, O.; Giveon, A.; Kutasov, D.; Giveon, A.; Kutasov, D., Jhep, Jhep, Jhep, 0001, 023, (2000)
[9] Kazakov, V.; Migdal, A.A., Nucl. phys. B, 311, 171, (1988)
[10] Brezin, E.; Kazakov, V.; Zamolodchikov, Al., Nucl. phys. B, 338, 673, (1990)
[11] Parisi, G., Phys. lett. B, 238, 209, (1990), 213
[12] Gross, D.; Miljkovic, N., Phys. lett. B, 238, 217, (1990)
[13] Ginsparg, P.; Zinn-Justin, J., Phys. lett. B, 240, 333, (1990)
[14] Kazakov, V., Bosonic strings and string field theories in one-dimensional target space, () · Zbl 0825.58056
[15] Klebanov, I., Proc. of the ICTP Spring School on String Theory and Quantum Gravity, Trieste, April, 1991
[16] Ginsparg, P.; Moore, G., Proc. of TASI, 1992
[17] Das, S.; Jevicki, A., Mod. phys. lett. A, 5, 1639, (1990)
[18] Das, S.R.; Dhar, A.; Mandal, G.; Wadia, S.; Dhar, A.; Mandal, G.; Wadia, S.; Dhar, A., Mod. phys. lett. A, Mod. phys. lett. A, Mod. phys. lett. A, Nucl. phys. B, 507, 277, (1997), 1331
[19] Polchinski, J., What is string theory?, Lectures presented at the 1994 Les Houches Summer School Fluctuating Geometries in Statistical Mechanics and Field Theory
[20] Jevicki, A.; Yoneya, D., Nucl. phys. B, 411, 64, (1994)
[21] V. Fateev, A. Zamolodchikov, Al. Zamolodchikov, unpublished
[22] Al.B. Zamolodchikov, unpublished
[23] Moore, G.
[24] Hsu, E.; Kutasov, D., Nucl. phys. B, 396, 693, (1993)
[25] Gross, D.; Klebanov, I., Nucl. phys. B, 344, 475, (1990)
[26] Gross, D.; Klebanov, I., Nucl. phys. B, 354, 459, (1990)
[27] Boulatov, D.; Kazakov, V., Int. J. mod. phys. A, 8, 809, (1993), revised version
[28] Matytsin, A.; Zaugg, P.; Matytsin, A.; Zaugg, P., Nucl. phys. B, Nucl. phys. B, 497, 699, (1997)
[29] Dijkgraaf, R.; Moore, G.; Plesser, R., Nucl. phys. B, 394, 356, (1993)
[30] Teschner, J.; Teschner, J.; Teschner, J., Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 571, 555, (2000)
[31] Knizhnik, V.; Polyakov, A.; Zamolodchikov, A.; David, F.; Distler, J.; Kawai, H., Mod. phys. lett. A, Mod. phys. lett. A, Nucl. phys. B, 321, 509, (1989)
[32] Di Francesco, P.; Kutasov, D., Nucl. phys. B, 375, 119, (1992)
[33] Kazama, Y.; Suzuki, H., Nucl. phys. B, 321, 232, (1989)
[34] Kutasov, D.; Seiberg, N.; Kutasov, D., Phys. lett. B, 251, 67, (1990), For a review, see
[35] Prudnikov, A.; Brichkov, Yu.; Marychev, O., Integrals and series, (1981), Nauka Moscow
[36] Berezinski, V.L.; Kosterlitz, J.M.; Thouless, D.J.; Villain, J., Jetp, J. phys. C, J. phys. C, 36, 581, (1975)
[37] Douglas, M.R., Conformal Theory Techniques in Large N Yang-Mills Theory, Talk at the 1993 Cargèse meeting
[38] Ueno, K.; Takasaki, K.; Takasaki, K., Adv. stud. pure math., Adv. stud. pure math., 4, 139, (1984)
[39] Jimbo, M.; Miwa, T., Publ. RIMS, Kyoto univ., 19, 3, 943, (1983)
[40] S. Shenker, Proc. of Cargese workshop on Random Surfaces, Quantum Gravity and Strings, 1990
[41] Gibbons, G.; Perry, M.; Nappi, C.R.; Pasquinucci, A., Int. J. mod. phys. D, Mod. phys. lett. A, 7, 3337, (1992)
[42] Gibbons, G.W.; Hawking, S.W., Phys. rev. D, 15, 2752, (1977)
[43] Seiberg, N.; Shenker, S., Phys. rev. D, 45, 4581, (1992)
[44] Maldacena, J., Adv. theor. math. phys., 2, 231, (1998)
[45] Kazakov, V.A., Solvable Matrix Models, Proc. of the MSRI Workshop Matrix Models and Painlevé Equations, Berkeley, 1999
[46] Kutasov, D.; Seiberg, N., Nucl. phys. B, 358, 600, (1991)
[47] Niarchos, V.
[48] Hirota, R., Direct method in soliton theory, () · Zbl 0124.21603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.