Explicit formulas for LMI-based \(H_2\) filtering and deconvolution. (English) Zbl 0988.93077

The paper studies an estimation method for a linear combination of the state and of the input of a time-invariant discrete-time linear system. The proposed technique is based on the solution of a set of linear matrix inequalities (LMI). Explicit formulas are provided for a suitable family of solutions to the LMI, and it is shown that a suboptimal estimator (in the sense of \(H_2\) performance) can be derived using such solutions.
Reviewer: G.Di Masi (Padova)


93E10 Estimation and detection in stochastic control theory
93E11 Filtering in stochastic control theory
60G35 Signal detection and filtering (aspects of stochastic processes)


LMI toolbox
Full Text: DOI


[1] Anderson, B.D.O.; Moore, J.B., Optimal filtering, (1979), Prentice-Hall Englewood Cliffs, NJ · Zbl 0758.93070
[2] Bittanti, S.; Cuzzola, F.A., An LMI approach to periodic discrete-time unbiased filtering, System and control letters, 42, 1, 21-35, (2001) · Zbl 0985.93057
[3] Gahinet, P., Nemirowski, A., Laub, A. J., & Chilali, M. (1994). LMI control toolbox. The MathWorks Inc.
[4] Geromel, J.C., Optimal linear filtering under parameter uncertainty, IEEE transactions on signal processing, 47, 1, 168-175, (1999) · Zbl 0988.93082
[5] Giusto, A.; Trofino Neto, A.; Castelan, E.B., H∞ and H2 design techniques for a class of prefilters, IEEE transactions on automatic control, 41, 6, 865-870, (1996) · Zbl 0852.93025
[6] Hassibi, B.; Sayed, A.H.; Kailath, T., Indefinite quadratic estimation and control—a unified approach to H2 and H∞ theories, (1999), SIAM Studies in Applied Mathematics Philadelphia · Zbl 0997.93506
[7] Horn, R.A.; Johnson, C.R., Matrix analysis, (1985), Cambridge University Press Cambridge · Zbl 0576.15001
[8] Khargonekar, P.P.; Rotea, M.A.; Baeyens, E., Mixed H2/H∞ filtering, International journal of robust and non linear control, 6, 313-330, (1996) · Zbl 0849.93063
[9] Li, H.; Fu, M., A linear matrix inequality approach to robust H∞ filtering., IEEE transactions on signal processing, 45, 9, 2338-2350, (1997)
[10] Limebeer, D. J. N., Shaked, U., & Yaesh, I. (2000). Less conservative BRLs for discrete-time linear systems with polytopic uncertainties. Preprint (private communication).
[11] Lindquist, A.; Michaletzky, Gy.; Picci, G., Zeros of spectral factors, the geometry of splitting subspaces, and the algebraic Riccati inequality, SIAM journal of control and optimization, 33, 365-401, (1995) · Zbl 0827.93061
[12] Oboe, R., & Dal Lago, F. (2000). Performance improvement of a single phase voltage controlled digital UPS by using a load current estimator. In Proceeding of international power conference IPEC 2000 (pp. 1056-1061). Tokyo.
[13] Palhares, R.M.; Peres, P.L.D., Robust filtering with guaranteed energy-to-peak performance—an LMI approach, Automatica, 36, 6, 851-858, (2000) · Zbl 0953.93067
[14] Park, P.; Kailath, T., H∞ filtering via convex optimisation, International journal of control, 66, 1, 15-22, (1997) · Zbl 0870.93041
[15] Skelton, R.E.; Iwasaki, T.; Grigoriadis, K., A unified algebraic approach to linear control design, (1998), Taylor & Francis London
[16] Takaba, K.; Katayama, T., Discrete-time H∞ algebraic equation and parametrization of all H∞ filters, International journal of control, 64, 6, 15-22, (1996)
[17] Voulgaris, P., On optimal ℓ^{∞} to ℓ∞ filtering, Automatica, 31, 3, 489-495, (1995) · Zbl 0821.93068
[18] Watson, J.T.; Grigoriadis, J.K., Optimal unbiased filtering via linear matrix inequalities, System and control letters, 35, 111-118, (1998) · Zbl 0909.93069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.