## Uniform asymptotic stability of impulsive delay differential equations.(English)Zbl 0989.34061

The paper has been written by famous scientists in the area of differental equations with impulsive effect. The system $\frac{dx(t)}{dt}=f(t,x_t), \qquad t\neq\tau_k,\tag{a}$
$\Delta x(t)=I(t,x_{t^-}),\qquad t=\tau_k,\tag{b}$ is considered. Here, $$t\in \mathbb{R}_+$$, $$0=\tau_0<\tau_1<\tau_2<\dots$$, $$\lim_{k\to\infty}\tau_k=+\infty$$, $$\Delta x(t)=x(t)-x(t^-)$$, $$x(t^-)=\lim_{s\to t^-}x(s)$$; (a) is a system of functional-differential equations with delay. It is assumed that $$f(t,0)\equiv 0$$, $$I(\tau_k,0)=0$$ for all $$\tau_k\in \mathbb{R}_+$$, and the system (a), (b) possesses a trivial (zero) solution $$x(t)\equiv 0$$. Two theorems on the uniform asymptotic stability of the trivial solution to (a), (b) are proved by means of Lyapunov functions and Razumikhin techniques. It is shown that impulses do contribute to yield stability properties even when the system (a) does not enjoy any stability behavior. The theorems are illustrated by some examples.

### MSC:

 34K20 Stability theory of functional-differential equations 34K45 Functional-differential equations with impulses 34A37 Ordinary differential equations with impulses

### Keywords:

impulsive delay differential equations; stability
Full Text:

### References:

  Hale, J.K.; Lunel, S.M.V., Introduction to functional differential equations, (1993), Springer-Verlag New York  Ballinger, G.; Liu, X., Existence and uniqueness results for impulsive delay differential equations, Dcdis, 5, 579-591, (1999) · Zbl 0955.34068  Liu, X., Stability results for impulsive differential systems with applications to population growth models, Dynamics and stability of systems, 9, 163-174, (1994) · Zbl 0808.34056  Wright, E.M., A non-linear difference-differential equation, Journal für die reine und angewandte Mathematik, 194, 66-87, (1955) · Zbl 0064.34203  Ballinger, G.; Liu, X., On boundedness of solutions of impulsive systems, Nonlinear studies, 4, 1, 121-131, (1997) · Zbl 0879.34015  Ballinger, G.; Liu, X., On boundedness of solutions for impulsive systems in terms of two measures, Nonlinear world, 4, 4, 417-434, (1997) · Zbl 0906.34011  Shen, J.H.; Yan, J., Razumikhin type stability theorems for impulsive functional differential equations, Nonlinear analysis, 33, 519-531, (1998) · Zbl 0933.34083  Ballinger, G.; Liu, X., Permanence of population growth models with impulsive effects, Mathl. comput. modelling, 26, 12, 59-72, (1997) · Zbl 1185.34014  Krishna, S.V.; Anokhin, A.V., Delay differential systems with discontinuous initial data and existence and uniqueness theorems for systems with impulse and delay, Journal of applied mathematics and stochastic analysis, 7, 1, 49-67, (1994) · Zbl 0802.34080  Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S., Theory of impulsive differential equations, (1989), World Scientific Singapore · Zbl 0719.34002  Lakshmikantham, V.; Liu, X., Stability criteria for impulsive differential equations in terms of two measures, J. math. anal. appl., 137, 591-604, (1989) · Zbl 0688.34031  Winston, E.; Yorke, J.A., Linear delay differential equations whose solutions become identically zero, Académie de la République populaire roumaine, 14, 885-887, (1969) · Zbl 0183.37401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.