Measuring small distances in \(N=2\) sigma models. (English) Zbl 0990.81689

Summary: We analyze global aspects of the moduli space of Kähler forms for \(N=(2,2)\) conformal \(\sigma\)-models. Using algebraic methods and mirror symmetry we study extensions of the mathematical notion of length (as specified by a Kähler structure) to conformal field theory and calculate the way in which lengths change as the moduli fields are varied along distinguished paths in the moduli space. We find strong evidence supporting the notion that, in the robust setting of quantum Calabi-Yau moduli space, string theory restricts the set of possible Kähler forms by enforcing “minimal length” scales, provided that topology change is properly taken into account. Some lengths, however, may shrink to zero. We also compare stringy geometry to classical general relativity in this context.


81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
32G81 Applications of deformations of analytic structures to the sciences
32J81 Applications of compact analytic spaces to the sciences
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv


[1] Aspinwall, P.S.; Greene, B.R.; Morrison, D.R., Phys. lett., B303, 249-259, (1993)
[2] Aspinwall, P.S.; Greene, B.R.; Morrison, D.R., Nucl. phys., B416, 414, (1994)
[3] Witten, E., Nucl. phys., B403, 159, (1993)
[4] Kikkawa, K.; Yamasaki, M.; Sakai, N.; Senda, I., Phys. lett., Prog. theor. phys., 75, 692, (1986)
[5] Candelas, P.; de la Ossa, X.C.; Green, P.S.; Parkes, L., Nucl. phys., B359, 21, (1991)
[6] Gross, D.J.; Mende, P., Nucl. phys., B303, 407, (1988)
[7] Oda, T.; Park, H.S., Tôhoku math. J., 43, 375, (1991)
[8] Zumino, B., Phys. lett., B87, 203, (1979)
[9] Candelas, P.; Horowitz, G.; Strominger, A.; Witten, E., Nucl. phys., B258, 46, (1985)
[10] Callan, C.G.; Friedan, D.; Martinec, E.J.; Parry, M.J., Nucl. phys., B262, 593, (1985)
[11] Vafa, C.; Warner, N., Phys. lett., B218, 51, (1989)
[12] Candelas, P.; De La Ossa, X.C.; Strominger, A., Nucl. phys., Commun. math. phys., 133, 163, (1990)
[13] Blau, M., The mathai-Quillen formalism and topological field theory, Lecture notes at the Karpacz winter school on infinite dimensional geometry in physics, (1992)
[14] Friedan, D., Ann. phys., 163, 318, (1985)
[15] Green, P.; Hübsch, T., Commun. math. phys., 113, 505, (1987)
[16] Candelas, P.; Dale, A.M.; Lütken, C.A.; Schimmrigk, R., Nucl. phys., B298, 493, (1988)
[17] Berglund, P.; Greene, B.R.; Hübsch, T., Mod. phys. lett., A7, 1855, (1992)
[18] Greene, B.; Vafa, C.; Warner, N., Nucl. phys., B324, 371, (1989)
[19] Cox, D.A., The homogeneous coordinate ring of a toric variety, (1992), preprint
[20] Candelas, P., Nucl. phys., B298, 458, (1988)
[21] Lerche, W.; Vafa, C.; Warner, N.P., Nucl. phys., B324, 427, (1989)
[22] Martinec, E.J., Phys. lett., B217, 431, (1989)
[23] E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, IAS preprint IASSNS-HEP-93/10
[24] Gepner, D., Phys. lett., B199, 380, (1987)
[25] Hübsch, T., Mod. phys. lett., A6, 1553, (1991)
[26] Greene, B.R.; Plesser, M.R., Nucl. phys., B338, 15, (1990)
[27] Aspinwall, P.S.; Greene, B.R.; Morrison, D.R., Int. math. res. notices, 319, (1993)
[28] Morrison, D.R., J. amer. math. soc., 6, 223, (1993)
[29] Morrison, D.R., Picard-Fuchs equations and mirror maps for hypersurfaces, () · Zbl 0904.32020
[30] Candelas, P.; de la Ossa, X.; Font, A.; Katz, S.; Morrison, D.R., Nucl. phys., B416, 481, (1994)
[31] Batyrev, V.V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, (November 1992), preprint
[32] Candelas, P.; Green, P.; Hübsch, T., Nucl. phys., B330, 49, (1990)
[33] Gel’fand, I.M.; Zelevinskiǐ, A.V.; Kapranov, M.M., Leningrad math. J., 2, 449, (1991), [from Russian in Algebra i analiz 2]
[34] Gel’fand, I.M.; Zelevinskiǐ, A.V.; Kapranov, M.M., Sov. math. dokl., 40, 278, (1990), [from Russian in Dokl. Acad. Nauk. SSSR 308]
[35] Morrison, D.R., Compactifications of moduli spaces inspired by mirror symmetry, (1993), preprint · Zbl 0824.14007
[36] Distler, J.; Greene, B., Nucl. phys., B309, 295, (1988)
[37] Batyrev, V.; van Straten, D., Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, (1993), preprint · Zbl 0843.14016
[38] P.S. Aspinwall, B.R. Greene and D.R. Morrison, to appear
[39] Witten, E., Commun. math. phys., 118, 411, (1988)
[40] Witten, E., Mirror manifolds and topological field theory, () · Zbl 0834.58013
[41] Batyrev, V.V., Quantum cohomology rings of toric manifolds, (1993), preprint · Zbl 0806.14041
[42] Dine, M.; Seiberg, N.; Wen, X.G.; Witten, E.; Dine, M.; Seiberg, N.; Wen, X.G.; Witten, E., Nucl. phys., Nucl. phys., 289, 319, (1987)
[43] Aspinwall, P.S.; Morrison, D.R., Commun. math. phys., 151, 245, (1993)
[44] Gel’fand, I.M.; Zelevinskiǐ, A.V.; Kapranov, M.M., Func. anal. appl., 23, 94, (1989), [from Russian in Funk. Anal. Pril. 23]
[45] Batyrev, V.V., Duke math. J., 69, 349, (1993)
[46] Billera, L.J.; Filliman, P.; Sturmfels, B., Adv. math., 83, 155, (1990)
[47] Alekseevskaya, T.V.; Gel’fand, I.M.; Zelevinskiǐ, A.V., Sov. math. dokl., 36, 589, (1988), [from Russian in Dokl. Acad. Nauk. SSSR 297]
[48] Witten, E., Nucl. phys., B371, 191, (1992)
[49] Gromov, M., Invent. math., 82, 307, (1985)
[50] McDuff, D., Invent. math., 89, 13, (1987)
[51] Vafa, C., Mod. phys. lett., A4, 1615-1626, (1989)
[52] Cvetič, M., Blown-up orbifolds, College Park, Int. workshop on superstrings, composite structures, and cosmology, (March 1987)
[53] Slater, L.J., Generalized hypergeometric functions, (1966), Cambridge Univ. Press Cambridge · Zbl 0135.28101
[54] Iwasaki, K.; Kimura, H.; Shimomura, S.; Yoshida, M., Asp. math., E16, (1991), Vieweg
[55] Gradshteyn, I.S.; Ryzhik, I.M., Tables of integrals, series and products, (1980), Academic Press New York · Zbl 0521.33001
[56] P. Candelas, E. Derrick and L. Parkes, Generalized Calabi-Yau manifolds and the mirror of a rigid manifold, CERN and Texas preprint CERN-TH.6831/93, UTTG-24-92
[57] Candelas, P.; de la Ossa, X.C., Nucl. phys., B342, 246, (1990)
[58] Freedman, D.Z.; Gibbons, G.W.; Hawking; Roček, Remarks on supersymmetry and Kähler geometry, Superspace and supergravity, Proc. nuffield workshop 1980, (1981), Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.