×

zbMATH — the first resource for mathematics

Complex wavelets for shift invariant analysis and filtering of signals. (English) Zbl 0990.94005
The author uses a dual tree of wavelet filters to have limited redundancy and allow approximate shift invariance and directionally selective filters while preserving perfect reconstruction and computational efficiency with well-balanced frequency responses. This discrete wavelet transform generates complex coefficients whose real and imaginary parts are obtained by means of the dual tree. Two variants of this new transform, based on odd/even and quarter-sample shift (Q-shift) filters, are discussed. Generalization to images and other multi-dimensional signals is briefly described and a range of applications is listed.

MSC:
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
93E11 Filtering in stochastic control theory
65T60 Numerical methods for wavelets
Software:
DT-CWT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mallat, S. G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE trans. PAMI 11, 674-693 (1989) · Zbl 0709.94650
[2] Mallat, S. G.: A wavelet tour of signal processing. (1998) · Zbl 0937.94001
[3] Burt, P.; Adelson, E. H.: The Laplacian pyramid as a compact image code. IEEE trans. Comm. 31, 532-540 (1983)
[4] Simoncelli, E. P.; Freeman, W. T.; Adelson, E. H.; Heeger, D. J.: Shiftable multiscale transforms. IEEE trans. Inform. theory 38, 587-607 (1992)
[5] Bamberger, R. H.; Smith, M. J. T.: A filter bank for the directional decomposition of images: theory and design. IEEE trans. Signal process. 40, 882-893 (1992)
[6] Vaidyanathan, P. P.; Hoang, P. -Q.: Lattice structures for optimal design and robust implementation of two-channel perfect reconstruction QMF banks. IEEE trans. ASSP, 81-94 (1988)
[7] Magarey, J. F. A.; Kingsbury, N. G.: Motion estimation using a complex-valued wavelet transform. IEEE trans. Signal process. 46 (1998) · Zbl 1054.94500
[8] Tay, D. B. H.; Kingsbury, N. G.: Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformations of variables. IEEE trans. Image process. 2, 466-480 (1993)
[9] Donoho, D. L.: De-noising by soft thresholding. IEEE trans. Inform. theory 41, 613-627 (1995) · Zbl 0820.62002
[10] N. G. Kingsbury, The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters, in, Proc. 8th IEEE DSP Workshop, Bryce Canyon, August 1998.
[11] N. G. Kingsbury, The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement, in, Proc. EUSIPCO 98, Rhodes, September 1998.
[12] N. G. Kingsbury, Shift invariant properties of the dual-tree complex wavelet transform, in, Proc. ICASSP 99, Phoenix, AZ, paper SPTM 3.6, March 16–19, 1999. · Zbl 0976.68527
[13] Kingsbury, N. G.: Image processing with complex wavelets. Philos. trans. Roy. soc. London ser. A 357, 2543-2560 (1999) · Zbl 0976.68527
[14] S. Hatipoglu, S. K. Mitra, and N. G. Kingsbury, Texture classification using dual-tree complex wavelet transform, inProc. 7th International IEE Conference on Image Processing and Its Applications, Manchester, England, July 12–15, 1999, pp. 344–347.
[15] P. F. C. de Rivaz, and, N. G. Kingsbury, Complex wavelet features for fast texture image retrieval, in, Proc. IEEE Conf. on Image Proc, Kobe, Japan, October 25–28, 1999.
[16] H. Choi, J. Romberg, R. Baraniuk, and, N. G. Kingsbury, Hidden Markov tree modelling of complex wavelet transforms, in, Proc. ICASSP 2000, Instanbul, June 6–9, 2000.
[17] A. H. Kam, T. T. Ng, N. G. Kingsbury, and, W. J. Fitzgerald, Content based image retrieval through object extraction and querying, in, Proc. IEEE Workshop on Content-based Access of Image and Video Libraries (CBAIVL-2000), Hilton Head, South Carolina, June 12, 2000.
[18] J. Romberg, H. Choi, R. Baraniuk, and, N. G. Kingsbury, Multiscale classification using complex wavelets, in, Proc. ICIP 2000, Vancouver, September 2000.
[19] A. Jalobeanu, L. Blanc-Feraud, and, J. Zerubia, Satellite image deconvolution using complex wavelet packets, in, Proc. ICIP 2000, Vancouver, September 2000.
[20] P. Hill, and, D. Bull, Rotationally invariant texture features using the dual-tree complex wavelet transform, in, Proc. ICIP 2000, Vancouver, September 2000.
[21] P. F. C. de Rivaz, and, N. G. Kingsbury, Fast segmentation using level set curves of complex wavelet surfaces, in, Proc. ICIP 2000, Vancouver, September 2000.
[22] P. Loo, and, N. G. Kingsbury, Digital watermarking using complex wavelets, in, Proc. ICIP 2000, Vancouver, September 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.