×

zbMATH — the first resource for mathematics

Quantum cryptography based on Bell’s theorem. (English) Zbl 0990.94509
Summary: Practical application of the generalized Bell’s theorem in the so-called key distribution process in cryptography is reported. The proposed scheme is based on the Bohm’s version of the Einstein-Podolsky-Rosen gedanken experiment and Bell’s theorem is used to test for eavesdropping.

MSC:
94A60 Cryptography
81P99 Foundations, quantum information and its processing, quantum axioms, and philosophy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] C. E. Shannon, Bell Syst. Tech. J. 28 pp 656– (1949)
[2] D. Deutsch, Proc. Roy. Soc. London A 400 pp 97– (1985) · Zbl 0900.81019
[3] D. Deutsch, Proc. Roy. Soc. London A 425 pp 73– (1989) · Zbl 0691.68054
[4] C.H. Bennett, SIGACT News 20 pp 78– (1989)
[5] S. Wiesner, SIGACT News 15 pp 78– (1983)
[6] A. Einstein, Phys. Rev. 47 pp 777– (1935) · Zbl 0012.04201
[7] D. Bohm, in: Quantum Theory (1951)
[8] J. S. Bell, N.Y.) 1 pp 195– (1965)
[9] J. F. Clauser, Phys. Rev. Lett. 23 pp 880– (1969) · Zbl 1371.81014
[10] A. Aspect, Phys. Rev. Lett. 49 pp 91– (1982)
[11] A. Aspect, Phys. Rev. Lett. 49 pp 1804– (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.