Adaptive methods for hybrid equilibrium finite element models. (English) Zbl 0991.74072

The authors claim that, since the inception of the finite element analysis of structures, many developments have focused on conforming displacement elements, nodal variables, and stiffness methods, to the detriment of equilibrium models. Since both approaches become simultaneously feasible, the paper is oriented to error estimation and adaptive methods for equilibrium models of linear elastic structures. The hybrid equilibrium finite element approach used here employs two basic ingredients: a) independent approximation of the stress field within each element as a linear combination of nodeless equilibrated functions; b) independent enforcement of interelement traction continuity by means of weighted residual equations. The weight functions approximate the boundary displacements used in the compatibility equations, resulting in a symmetric system where static-kinematic duality is preserved. An adaptive strategy for \(h\)-refinement of the present approach is based on local mesh refinement that allows for irregular meshes without the need for multipoint constraints. Three different procedures are presented for obtaining element error indicators which regulate the adaptive strategy. For a plane stress problem to which this strategy has been applied, the three procedures give similar convergence rates. In spite of the satisfactory results obtained so far, the authors point out that further investigations are required before general conclusions can be drawn with confidence for plane stress problems, and similar remarks hold also for the three-dimensional case.


74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
Full Text: DOI


[1] deVeubeke, B.M.F., Displacement and equilibrium models in the finite element method, ()
[2] Przemieniecki, J.S., Theory of matrix structural analysis, (1968), McGraw-Hill · Zbl 0177.53201
[3] Robinson, J., Integrated theory of finite element methods, (1973), Wiley · Zbl 0333.73064
[4] Gallagher, R.H., Finite element analysis fundamentals, (1975), Prentice-Hall
[5] Gallagher, R.H.; Heinrich, J.C.; Sarigul, N., Complementary energy revisited, (), 453-465 · Zbl 0464.73092
[6] Robinson, J., The mode-amplitude technique and hierarchical stress elements—a simplified and natural approach, Int. J. numer. methods engrg., 21, 487-507, (1985) · Zbl 0555.73073
[7] Almeida, J.P.M.; Freitas, J.A.T., Alternative approach to the formulation of hybrid equilibrium finite elements, Comput. struct., 40, 4, 1043-1047, (1991)
[8] Almeida, J.P.M.; Freitas, J.A.T., Continuity conditions for finite element analysis of solids, Int. J. numer. methods engrg., 33, 845-853, (1992) · Zbl 0825.73828
[9] Jirousek, J.; Zielinski, A.P., Dual hybrid-Trefftz element formulation based on independent boundary traction frame, Int. J. numer. methods engrg., 36, 2955-2980, (1993) · Zbl 0812.73058
[10] Maunder, E.A.W.; Almeida, J.P.M.; Ramsay, A.C.A., A general formulation of equilibrium macro-elements with control of spurious kinematic modes, Int. J. numer. methods engrg., 39, 3175-3194, (1996) · Zbl 0878.73070
[11] Jakobsen, B., The sleipner accident and its causes, (), 102-108
[12] Ladeveze, P.; Pelle, J.P.; Rougeot, P.H., Error estimation and mesh optimization for classical finite elements, Engrg. comput., 8, 69-80, (1991)
[13] Munro, J.; Smith, D.L., Linear programming duality in plastic analysis and synthesis, ()
[14] Almeida, J.P.M.; Pereira, O.J.B.A., A set of hybrid equilibrium finite element models for the analysis of three-dimensional solids, Int. J. numer. methods engrg., 39, 2789-2802, (1996) · Zbl 0873.73067
[15] Pian, T.H.H., Derivation of element stiffness matrices by assumed stress distributions, Aiaa j., 3, 1333-1335, (1967)
[16] Jirousek, J., Variational formulation of two complementary hybrid-Trefftz finite element models, Comm. numer. methods engrg., 9, 837-845, (1993) · Zbl 0789.73070
[17] de Veubeke, B.M.F., Diffusive equilibrium models, (), 569-628
[18] Maunder, E.A.W.; de Almeida, J.P. Moitinho, Hybrid-equilibrium elements with control of spurious kinematic modes, Comput. assist. mech. engrg. sci., 4, 587-605, (1997) · Zbl 0969.74589
[19] Pereira, O.J.B.A., Utilização de elementos finitos de equilíbrio EM refinamento adaptativo, ()
[20] Sander, G., Application of the dual analysis principle, ()
[21] Babuska, I.; Rheinbolt, W.C., A posteriori error estimates for the finite element method, Int. J. numer. methods engrg., 12, 1597-1615, (1978) · Zbl 0396.65068
[22] Kelly, D.W.; Gago, J.P.S.R.; Zienkiewicz, O.C., A posteriori error analysis and adaptive processes in the finite element method: part I—error analysis, Int. J. numer. methods engrg., 19, 1593-1619, (1983) · Zbl 0534.65068
[23] Zienkiewicz, O.C.; Zhu, J.Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. numer. methods engrg., 24, 337-357, (1987) · Zbl 0602.73063
[24] Zienkiewicz, O.C.; Zhu, J.Z., The superconvergent patch recovery (SPR) and adaptive finite element refinement, Comput. methods appl. mech. engrg., 101, 207-224, (1992) · Zbl 0779.73078
[25] Zhong, H.G.; Beckers, P., Solution approximation error estimators for the finite element solution, (), LTAS · Zbl 0917.73074
[26] Debongnie, J.F., A general theory of dual error bounds by finite elements, () · Zbl 0393.73097
[27] Prager, W.; Synge, J.L., Approximations in elasticity based on the concept of function space, Quart. appl. math., 5, 3, 241-269, (1947) · Zbl 0029.23505
[28] Ladeveze, P.; Leguillon, D., Error estimate procedure in the finite element method and applications, SIAM J. numer. anal., 20, 3, 483-509, (1983) · Zbl 0582.65078
[29] Oden, J.T.; Demkowicz, L.; Rachowicz, W.; Westermann, T.A., Toward a universal h-p adaptive finite element strategy, part 2, a posteriori error estimation, Comput. methods appl. mech. engrg., 77, 113-180, (1989) · Zbl 0723.73075
[30] Pereira, O.J.B.A.; Almeida, J.P.M., Equilibrium finite elements and dual analysis in three-dimensional elastostatics, (), 955-960
[31] May, A.J., Error bounding in meshes of triangular equilibrium super-elements, ()
[32] Piteri, M.A., Geração automática de malhas hierárquico-adaptativas EM domínios bidimensionais e tridimensionais, ()
[33] Babuska, I.; Reinbolt, W.C., Error estimates for adaptive finite element computations, SIAM J. numer. anal., 15, 4, 736-774, (1978) · Zbl 0398.65069
[34] Pereira, O.J.B.A.; Bugeda, G., Mesh optimality criteria and remeshing strategies for singular point problems, ()
[35] Johnson, C.; Mercier, B., Some equilibrium finite element methods for two-dimensional elasticity, Numer. math., 30, 103-116, (1978) · Zbl 0427.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.