A fuzzy goal programming approach to portfolio selection. (English) Zbl 0992.90085

Summary: Portfolio selection is a usual multiobjective problem. This paper will try to deal with the optimum portfolio for a private investor, taking into account three criteria: return, risk and liquidity. These objectives, in general, are not crisp from the point of view of the investor, so we will deal with them in fuzzy terms. The problem formulation is a goal programming (G.P.) one, where the goals and the constraints are fuzzy. We will apply a fuzzy G.P. approach to the above problem to obtain a solution. Then, we will offer the investor help in handling the results.


90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
91G10 Portfolio theory
90C29 Multi-objective and goal programming


Full Text: DOI


[1] Arenas Parra, M., Bilbao Terol, A., Jiménez, M., Rodrı́guez Uría, M.V., 1997. A fuzzy solution approach to a fuzzy linear G.P. problem. In: Fandel, G., Gal, T., Hanne, T. (Eds.), Lectures Notes in Economics and Mathematical Systems 448: Multiple Criteria Decision Making, Springer, Berlin, pp. 255-264
[2] Arenas, M., 1997. Programación Multiobjetivo en Ambiente Difuso. Tesis Doctoral. Dpto. Economía Cuantitativa, Universidad de Oviedo
[3] Arenas, M., Bilbao, A., Rodrı́guez, M.V., Jiménez, M., 1998. Fuzzy parameters multiobjective linear programming problem. Solution analysis. In: Stewart, T.J., van den Honert, R.C. (Eds.), Lectures Notes in Economics and Mathematical Systems 465: Trends in Multicriteria Decision Making, Springer, Berlin, pp. 128-137
[4] Arenas, M.; Bilbao, A.; Rodrı́guez, M.V., Solving the multiobjective possibilistic linear programming problem, European journal of operational research, 117, 175-182, (1999) · Zbl 0998.90090
[5] Charnes, A., Cooper, W.W., 1961. Management Models and Industrial Applications of Linear Programming, vol. 1. Wiley, New York. (Chapter 6, Appendix B, Basic Existence Theorems and Goal Programming) · Zbl 0107.37004
[6] Connor, G. 1982. A factor pricing theory of capital assets. Working Paper, Northwestern University, Evanston, IL
[7] Connor, G., Korajczyk, R.A., 1995. The arbitrage pricing theory and multifactor models of asset returns. In: Jarrow, R., et al. (Eds.), Handbook in OR and MS, vol. 9. pp. 87-143
[8] Delgado, M.; Verdegay, J.L.; Vila, M.A., Fuzzy numbers definitions and properties, Mathware and soft computing, 1, 31-43, (1994) · Zbl 0837.04007
[9] Dubois, D.; Prade, H., Fuzzy sets and systems – theory and applications, (1980), Academic Press New York · Zbl 0444.94049
[10] Dubois, D.; Prade, H., Théorie des possibilités. applications à la représentation des connaissances en informatique, (1985), Masson París · Zbl 0674.68059
[11] Elton, E.J.; Gruber, M.J., Estimating the dependence structure of share prices – implications for portfolio selection, The journal of finance, 28, 1203-1233, (1973)
[12] Esteve, J., 1994. La Teoría de Carteras enfocada desde los modelos lineales deíndices. Aplicación a los fondos de inversión mobiliarios españoles. Tesis doctoral. Universidad Autonoma de Barcelona
[13] Hwang, C.L., Masud, A., 1979. Multiple objective decision making methods and applications. in: Fandel, G., Gal, T., Hanne, T. (Eds.), Lectures Notes in Economics and Mathematical Systems 164. Springer, Berlin · Zbl 0397.90001
[14] Heilpern, S., The expected value of a fuzzy number, Fuzzy sets and systems, 47, 81-86, (1992) · Zbl 0755.60004
[15] Huberman, G., Arbitrage pricing theory a simple approach, Journal of economic theory, 28, 183-191, (1982) · Zbl 0519.90017
[16] Ignizio, J.P., Goal programming and extensions, (1979), Lexington Books Lexington, MA · Zbl 1052.90584
[17] Konno, H.; Yamazaki, H., Mean-absolute deviation portfolio optimization model and its applications to tokio stock market, Management science, 37, 5, 519-531, (1991)
[18] Lee, S.M.; Lerro, A.J., Optimizing the portfolio selection for mutual funds, The journal of finance, XXVIII, 1087-2001, (1973)
[19] Lee, S.M.; Chesser, D.L., Goal programming for portfolio selection, The journal of portfolio management, 22-26, (1980)
[20] Lintner, J., The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets, Review of economic and statistic, 47, 13-37, (1965)
[21] Markowitz, H.M., Portfolio selection, The journal of finance, 7, 1, 77-91, (1952)
[22] Markowitz, H.M., Portfolio selection: efficient diversification of investments, (1959), Wiley New York
[23] Markowitz, H.M.; Perold, A.F., Portfolio analysis with factors and scenarios, The journal of finance, XXXVI, 14, 871-877, (1981) · Zbl 0472.65053
[24] Matlab, Optimization Toolbox, Reference guide and User’s guide. The Math Works Inc. for Microsoft Windows
[25] Östermark, R., Fuzzy linear constraints in the capital asset pricing model, Fuzzy sets and systems, 30, 93-102, (1989) · Zbl 0664.90008
[26] Perold, A.F., Large-scale portfolio optimization, Management science, 30, 10, 1143-1160, (1984) · Zbl 0548.90008
[27] Pogue, G.A., 1970. An extension of the Markowitz portfolio selection model to include variable transactions’ costs, short sales, leverage policies and taxes. Journal of Finance XXV (5)
[28] Romero, C., Handbook of critical issues in goal programming, (1991), Pergamon Press New York · Zbl 0817.68034
[29] Ross, S.A., The arbitrage theory of capital asset pricing, Journal of economic theory, 3, 341-360, (1976)
[30] Sharpe, W.F., A simplified model for portfolio analysis, Management science, 277-293, (1963)
[31] Sharpe, W.F., Capital asset prices: A theory of market equilibrium under conditions of R, The journal of finance, XIX, 3, 425-442, (1964)
[32] Sharpe, W.F., A linear programming algorithm for a mutual fund portfolio selection, Management science, 13, 499-510, (1967)
[33] Sharpe, W.F., Portfolio theory and capital markets, (1970), McGraw-Hill New York
[34] Sharpe, W.F., A linear programming approximation for the general portfolio analysis problem, Journal of financial and quantitative analysis, 1263-1275, (1971)
[35] Stone, B.K., A linear programming formulation of the general portfolio selection problem, Journal of financial and quantitative analysis, 8, 621-636, (1973)
[36] Tanaka, H.; Guo, P., Portfolio selection based on upper and lower exponential possibility distributions, European journal of operational research, 114, 115-126, (1999) · Zbl 0945.91017
[37] Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1, 3-28, (1978) · Zbl 0377.04002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.