×

zbMATH — the first resource for mathematics

MHD rotating flow of a third-grade fluid on an oscillating porous plate. (English) Zbl 0993.76091
Summary: We consider a rotating flow of third-grade fluid on an oscillating porous plate in the presence of transverse magnetic field. An analytic solution of the governing nonlinear boundary-layer equations is obtained, and expressions for velocity profile are derived. It is found that external magnetic field has the same effect on the flow as the material parameters of the fluid. Further, symmetric and asymmetric nature of the solutions is discussed.

MSC:
76W05 Magnetohydrodynamics and electrohydrodynamics
76A05 Non-Newtonian fluids
76U05 General theory of rotating fluids
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rivlin, R. S., Ericksen, J. L.: Stress deformation relation for isotropic materials. J. Rat. Mech. Anal.4, 323-425 (1955). · Zbl 0064.42004
[2] Coleman, B. D., Noll, W.: An approximation theorem for functionals with application in continuum mechanics, Arch. Rat. Mech. Anal.6, 335-370 (1999). · Zbl 0097.16403
[3] Fosdick, R. L., Rajagopal, K. R.: Thermodynamics and stability of fluids of third grade. Proc. Roy. Soc. Lond. Ser.A 339, 351-377 (1980). · Zbl 0441.76002 · doi:10.1098/rspa.1980.0005
[4] Rajagopal, K. R., Na, T. Y.: On Stokes’ problem for a non-Newtonian fluid. Acta Mech.48, 233-239 (1983). · Zbl 0528.76003 · doi:10.1007/BF01170422
[5] Siddiqui, A. M., Kaloni, P. N.: Plane steady flows of a third-grade fluid. Int. J. Engng Sci.25, 171-188 (1987). · Zbl 0615.76007 · doi:10.1016/0020-7225(87)90004-8
[6] Erdogan, M. E.: Plane surface suddenly set in motion in a non-Newtonian fluid. Acta Mech.108, 179-187 (1995). · Zbl 0846.76006 · doi:10.1007/BF01177337
[7] Molloica, F., Rajagopal, K. R.: Secondary flows due to axial shearing of third grade fluid between two eccentrically placed cylinders. Int. J. Engng Sci.37, 411-429 (1999). · Zbl 1210.76017 · doi:10.1016/S0020-7225(98)00057-3
[8] Schlichting, H.: Grenzschichttheorie, 8th ed. Karlsruhe: Braun 1982. · Zbl 0089.19204
[9] Debnath, L.: On unsteady magnetohydrodynamic boundary layer in a rotating flow. ZAMM52, 623-626 (1972). · Zbl 0257.76098 · doi:10.1002/zamm.19720521010
[10] Foote, J. R., Puri, P., Kythe, P. K.: Some exact solutions of the Stokes problem for an elastico-viscous fluid. Acta Mech.68, 223-230 (1987). · Zbl 0628.76010 · doi:10.1007/BF01190885
[11] Puri, P.: Rotating flow of an elastico-viscous fluid on an oscillating plate. ZAMM54, 743-745 (1974). · Zbl 0292.76063 · doi:10.1002/zamm.19740541015
[12] Turbatu, S., Bühler, K., Zierep, J.: New solutions of the II-Stokes problem for an oscillating flat plate. Acta Mech.129, 25-30 (1998). · Zbl 0914.76025 · doi:10.1007/BF01379648
[13] Sarpkaya, T.: Flow of non-Newtonian fluids in a magnetic field. AICHE J.7, 324-328 (2000). · doi:10.1002/aic.690070231
[14] Rossow, V. J.: On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field. NASA report 1358, p. 489 (1958).
[15] Shercliff, J. A.: A textbook of magnetohydrodynamics. Ist ed. Oxford New York: Pergamon 1965. · Zbl 0134.22101
[16] Hinch, E. J.: Perturbation methods. New York: Cambridge University Press (1992). · Zbl 0746.34001
[17] Berker, R.: A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel planes rotating about the same axis. Arch. Mech. Stos.31, 265-280 (1979). · Zbl 0415.76026
[18] Parter, S. V., Rajagopal, K. R.: Swirling flow between rotating plates. Arch. Rat. Mech. Anal.86, 305-315 (1984). · Zbl 0594.76022 · doi:10.1007/BF00280030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.