×

On quantum particles. (English) Zbl 0994.81021

Summary: A new theory of quantum particles is proposed, in which the equation of motion is a pair of evolution equations in duality. The existence of the equation of dynamics is shown. The equation of dynamics determines Markov processes, which enable us to analyze the motion of quantum particles.

MSC:

81P20 Stochastic mechanics (including stochastic electrodynamics)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aspect, A.; Dalibard, J.; Roger, G., Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett., 49, 1804-1807 (1982)
[2] Bell, J. S., On the Einstein Podolsky Rosen paradox, Physics, 1, 195-202 (1964)
[3] Dirac, P. A.M., Relativity and quantum mechanics, Fields Quanta, 3, 139-164 (1972)
[4] Einstein, A.; Podolsky, B.; Rosen, N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47, 777-780 (1935) · Zbl 0012.04201
[5] El Naschie, M. S., Quantum measurement, information, diffusion and Cantorian geodesics, (El Naschie, M. S.; Rössler, O. E.; Prigogine, I., Quantum mechanics, diffusion and chaotic fractals (1995), Elsevier Science: Elsevier Science Oxford), 191-205 · Zbl 0818.58041
[6] Kolmogoroff, A., Zur theorie der Markoffschen Ketten, Math. Ann., 112, 155-160 (1936) · Zbl 0012.41001
[7] Kolmogoroff, A., Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann., 113, 766-772 (1937) · Zbl 0015.26004
[8] Nagasawa, M., Time reversal of Markov processes, Nagoya Math. J., 24, 177-204 (1964) · Zbl 0133.10702
[9] Nagasawa, M., A principle of superposition and interference of diffusion processes, (Third European Symposium on Analysis and Probability, 1992; Institute Henri Poincaré. Sém. de Probabilités XXVII. Third European Symposium on Analysis and Probability, 1992; Institute Henri Poincaré. Sém. de Probabilités XXVII, Lecture notes in mathematics, vol. 1557 (1993), Springer: Springer Berlin), 1-14 · Zbl 0798.60077
[10] Nagasawa, M., Schrödinger equations and diffusion theory (1993), Birkhäuser: Birkhäuser Basel · Zbl 0780.60003
[11] Nagasawa, M., Quantum theory, theory of Brownian motions, and relativity theory, Chaos, Solitons & Fractals, 7, 631-643 (1996) · Zbl 1080.81539
[12] Nagasawa, M., Time reversal of Markov processes and relativistic quantum theory, Chaos, Solitons & Fractals, 8, 1711-1772 (1997), [2000;11:2579, erratum] · Zbl 0935.81040
[13] Nagasawa, M., On the locality of hidden variable theories in quantum physics, Chaos, Solitons & Fractals, 8, 1773-1792 (1997) · Zbl 0935.81007
[14] Nagasawa, M., Stochastic processes in quantum physics (2000), Birkhäuser: Birkhäuser Basel · Zbl 0998.81519
[15] Nagasawa, M.; Schröder, K., A note on the locality of Gudder’s hidden-variable theory, Chaos, Solitons & Fractals, 8, 1793-1805 (1997) · Zbl 0935.81008
[16] Nagasawa, M.; Tanaka, H., Stochastic differential equations of pure-jumps in relativistic quantum theory, Chaos, Solitons & Fractals, 10, 8, 1265-1280 (1999) · Zbl 0963.81009
[17] Nagasawa, M.; Tanaka, H., Time dependent subordination and Markov processes with jumps, (Sém. de Probabilité XXXIV. Sém. de Probabilité XXXIV, Lecture notes in mathematics, vol. 1729 (1999), Springer: Springer Berlin), 257-288 · Zbl 0963.60062
[18] Nagasawa, M.; Tanaka, H., The principle of variation for relativistic quantum particles, (Sém. de Probabilité XXXV. Sém. de Probabilité XXXV, Lecture notes in mathematics, vol. 1775 (1999), Springer: Springer Berlin), 1-27 · Zbl 0981.60100
[19] Nagasawa M, Tanaka H. Concave majorants of Lévy process. 1999 [unpublished]; Nagasawa M, Tanaka H. Concave majorants of Lévy process. 1999 [unpublished]
[20] Nagayama, K., Complex observation in electron microscopy. I. Basic scheme to surpass the Scherzer limit, J. Phys. Soc. Jpn., 68, 811-822 (1999)
[21] Schrödinger, E., Über die Umkehrung der Naturgesetze, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl., 144-153 (1931) · JFM 57.1147.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.