×

Nonequilibrium stationary states of noninteracting electrons in a one-dimensional lattice. (English) Zbl 0994.82049

Summary: Nonequilibrium stationary states of a one-dimensional quantum conductor placed between two reservoirs are investigated. Applying the theory of \(C^*\)-algebra, as \(t\to+\infty\), any state including the degrees of freedom of reservoirs is shown to weakly evolve to a quasifree stationary state with nonvanishing currents. The stationary state exhibits transports which are consistent with nonequilibrium thermodynamics and, in this sense, it has broken time symmetry. Particularly, the electric and energy currents are shown to be expressed by two-probe Landauer-type formulas and they reduce to the results by Sivan-Imry and Bagwell-Orlando in appropriate regimes. As a consequence of the time reversal symmetry, there exists another stationary state with anti-thermodynamical transports, which is the \(t\to-\infty\) limit of the initial state. The consistency between the dynamical reversibility and the irreversibility of the evolution of states is discussed as well.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
46L60 Applications of selfadjoint operator algebras to physics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Prigogine, I., Nonequilibrium statistical mechanics, (1962), Wiley New York, [and references therein] · Zbl 0106.43301
[2] Toda M, Kubo R, Saito N. Statistical physics, vol I. 2nd ed. New York: Springer; 1992 · Zbl 0757.60108
[3] Kubo R, Toda M, Hashitsume N. Statistical physics, vol. II. 2nd ed. New York: Springer; 1991 [and references therein] · Zbl 0757.60109
[4] Reichl, L., A modern course in statistical physics, (1998), Wiley New York, [and references therein] · Zbl 0913.00015
[5] Petrosky, T.; Prigogine, I., Adv. chem. phys., 99, 1, (1997), [and references therein]
[6] Prigogine, I.; Petrosky, T., (), 153, [and references therein]
[7] Antoniou, I.; Gadella, M.; Prigogine, I.; Pronko, G.P., J. math. phys., 39, 2995, (1998)
[8] Antoniou, I.; Prigogine, I., Physica A, 192, 443, (1993)
[9] Antoniou, I.; Tasaki, S., Int. J. quantum chem., 46, 425, (1993), [and references therein]
[10] Driebe, D., Fully chaotic maps and broken time symmetry, (1999), Kluwer Academic Publishers Dordrecht, [and references therein] · Zbl 1006.37022
[11] Gaspard, P., Chaos, scattering and statistical mechanics, (1998), Cambridge University Press Cambridge, [and references therein] · Zbl 0915.00011
[12] Dorfman, J.R., An introduction to chaos in non-equilibrium statistical mechanics, (1999), Cambridge University Press Cambridge, [and references therein] · Zbl 0973.82001
[13] Chaos and irreversibility [focus issue]. Chaos 1998;8 [and references therein]
[14] Ruelle, D., J. stat. phys., 95, 393, (1999), [and references therein]
[15] Jaksić, V.; Pillet, C.-A., J. math. phys., 38, 1757, (1997), [and references therein]
[16] Bohm, A.; Gadella, M., Dirac kets, Gamow vectors and Gel’fand triplets, () · Zbl 0388.46045
[17] Sudarshan, E.C.G., Phys. rev. A, 50, 2006, (1994)
[18] Bratteli, O.; Robinson, D.W., ()
[19] Bratteli, O.; Robinson, D.W., ()
[20] Emch, G.E., Algebraic methods in statistical mechanics and quantum field theory, (1972), Wiley New York · Zbl 0235.46085
[21] Haag, R., Local quantum physics, (1996), Springer Berlin
[22] O’Connor, A.J.; Lebowitz, J.L., J. math. phys., 15, 692, (1974), [and references therein]
[23] Lebowitz, J.L.; Spohn, H., J. stat. phys., 19, 633, (1978)
[24] Goldstein, S.; Kipnis, C.; Ianiro, N., J. stat. phys., 41, 915, (1985), [and references therein]
[25] Zürcher, U.; Talkner, P., Phys. rev. A, 42, 3278, (1990), [and references therein]
[26] Frensley, W.R., Rev. mod. phys., 62, 745, (1990), [and references therein]
[27] Klein, G.; Prigogine, I., Physica, 19, 74891053, (1953)
[28] Brout, R.; Prigogine, I., Physica, 22, 621, (1956)
[29] Spohn, H.; Lebowitz, J.L., Commun. math. phys., 54, 97, (1977), [and references therein]
[30] Bafaluy, J.; Rubi, J.M., Physica A, 153, 129, (1988)
[31] Bafaluy, J.; Rubi, J.M., Physica A, 153, 147, (1988)
[32] Eckmann, J.-P.; Pillet, C.-A.; Rey-Bellet, L., Commun. math. phys., 201, 657, (1999)
[33] Eckmann, J.-P.; Pillet, C.-A.; Rey-Bellet, L., J. stat. phys., 95, 305, (1999)
[34] Farmer, J.; Goldstein, S.; Speer, E.R., J. stat. phys., 34, 263, (1984)
[35] Tasaki, S.; Gaspard, P., J. stat. phys., 81, 935, (1995)
[36] Tasaki, S.; Gaspard, P., Theor. chem. acc., 102, 385, (1999), [and references therein]
[37] Gaspard, P., Phys. rev. E, 53, 4379, (1996)
[38] Antal, T.; Rácz, Z.; Sasvári, L., Phys. rev. lett., 78, 167, (1997)
[39] Antal, T.; Rácz, Z.; Rákos, A.; Schütz, G.M., Phys. rev. E, 57, 5184, (1998)
[40] Antal, T.; Rácz, Z.; Rákos, A.; Schütz, G.M., Phys. rev. E, 59, 4912, (1999)
[41] Bagwell, P.F.; Orlando, T.P., Phys. rev. B, 40, 1456, (1989)
[42] Sivan, U.; Imry, Y., Phys. rev. B, 33, 551, (1986)
[43] Imry, Y., Introduction to mesoscopic physics, (1997), Oxford University Press New York
[44] Datta, S., Electronic transport in mesoscopic systems, (1995), Cambridge University Press Cambridge, [and references therein]
[45] Landauer, R., Philos. mag., 21, 863, (1970)
[46] Anderson, P.W.; Thouless, D.J.; Abrahams, E.; Fisher, D.S., Phys. rev. B, 22, 3519, (1980)
[47] Economou, E.N.; Soukoulis, C.M., Phys. rev. lett., 46, 618, (1981)
[48] Fisher, D.S.; Lee, P.A., Phys. rev. B, 23, 6851, (1981)
[49] Araki, H., Publ. RIMS Kyoto univ., 20, 277, (1984)
[50] Araki, H., Publ. RIMS Kyoto univ., 6, 385, (1970)
[51] Araki, H., Publ. RIMS Kyoto univ., 7, 121, (1971)
[52] Petrosky, T.Y.; Prigogine, I., Physica A, 147, 489, (1988)
[53] Ho, T.G.; Araki, H., Proc. Steklov. math. institute, 228, 191, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.