×

zbMATH — the first resource for mathematics

Robust control of delay systems: a sliding mode control design via LMI. (English) Zbl 0994.93004
Summary: This paper considers the sliding mode control of uncertain systems with single or multiple, constant or time-varying state-delays, submitted to additive perturbations. The sliding surface is designed so to maximize the calculable set of admissible delays. The conditions for the existence of the sliding regime are studied by using Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin functions. LMIs are used for the optimization procedure. Two examples illustrate the proposed method.

MSC:
93B12 Variable structure systems
93C23 Control/observation systems governed by functional-differential equations
93C73 Perturbations in control/observation systems
93D30 Lyapunov and storage functions
15A39 Linear inequalities of matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Aggoune, Contribution à la stabilisation de systèmes non linéaires: application aux systèmes non réguliers et aux systèmes à retards, Ph.D., INRIA Lorraine/CRAN, University of Metz, June, 1999 (in French).
[2] C. Bonnet, J.R. Partington, M. Sorine, Robust control and tracking in l∞ of delay systems equipped with a relay sensor, Proceedings of the 8th IFAC Conference on Large Scale Systems (LSS’98), Patras, July 1998.
[3] Bonnet, C.; Partington, J.R.; Sorine, M., Robust stabilization of a delay system with saturating actuator or sensor, Int. J. robust nonlinear control, 10, 7, 579-590, (2000) · Zbl 0973.93045
[4] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA
[5] Choi, H.H., A new method for variable structure control system design: a linear matrix inequality approach, Automatica, 33, 2089-2092, (1997) · Zbl 0911.93022
[6] H.H. Choi, An LMI approach to sliding mode control design for a class of uncertain time-delay systems, Proceedings of the European Control Conference (ECC’99), Karlsruhe, 1999.
[7] Conte, G.; Perdon, A.M., The disturbance decoupling problem for systems of a ring, SIAM J. control optim., 33, 3, 750-764, (1995) · Zbl 0831.93011
[8] G. Conte, A.-M. Perdon, Systems over rings: theory and applications, Plenary lecture, Proceedings of the IFAC Workshop on Linear Time Delay Systems (LTDS’98), Grenoble, France, July 1998, pp. 223-234.
[9] M. Dambrine, F. Gouaisbaut, W. Perruquetti, J.-P. Richard, Robustness of sliding mode control under delays effects: a case study, Second IEEE-IMACS Conference Comput. Eng. in Systems Appl. (CESA’98), 1998, pp. 817-821.
[10] M. Dambrine, J.P. Richard, P. Borne, Feedback control of time-delay systems with bounded control and state, Math. Problems Engrg. (1) (1995) 77-87. · Zbl 0918.93040
[11] L. Dugard, E.I. Verriest (Eds.), Stability and Control of Time-delay Systems, Lecture Notes in Control and Information Sciences, Vol. 228, Springer, Berlin, 1997.
[12] L.M. Fridman, E. Fridman, E.I. Shustin, Steady modes and sliding modes in the relay control systems with time delay, Proceedings of the 35th IEEE Conference on Decision and Control (CDC’96), Kobe, Japan, 1996, pp. 4601-4606.
[13] M. Fu, H. Li, S.I. Niculescu, Robust Stability and Stabilisation of Time-Delay System Via Integral Quadratic Constraint Approach, Lecture Notes in Control and Information Sciences, Vol. 228, Springer, Berlin, 1997, pp. 101-116. · Zbl 0916.93068
[14] F. Gouaisbaut, W. Perruquetti, Y. Orlov, J.P. Richard, A sliding mode controller for linear time delay systems, Proceedings of the European Control Conference (ECC’99), Karlsruhe, 1999.
[15] F. Gouaisbaut, W. Perruquetti, J.P. Richard, A sliding mode control for linear systems with input and state delays, Proceedings of the 38th IEEE Conference on Decision and Control (CDC’99), Phoenix, 1999.
[16] D. Ivanescu, Sur la stabilisation des systèmes à retard: théorie et applications, Ph.D thesis, Institut National Polytechnique de Grenoble, 2000.
[17] Kolmanovskii, V.B.; Myshkis, A., Introduction to the theory and applications of functional differential equations, (1999), Kluwer Academic Publishers Dordrecht · Zbl 0917.34001
[18] Kolmanovskii, V.B.; Niculescu, S.I.; Richard, J.P., On the liapunov – krasovskii functionals for stability analysis of linear delay systems, Int. J. control, 72, 4, 374-384, (1999) · Zbl 0952.34057
[19] A.J. Koshkouei, A.S.I. Zinober, Sliding mode time-delay systems, Proceedings of the International Workshop on VSS, Tokyo, 1996, pp. 97-101.
[20] X. Li, C.E. De Souza, Robust stabilization and H∞ control of uncertain linear time-delay systems, Proceedings of the 13th IFAC World Congress, San Francisco, CA, 1996, Vol. H, pp. 113-118.
[21] Li, X.; De Souza, C.E., Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach, IEEE trans. automat. control, 42, 8, 1144-1148, (1997) · Zbl 0889.93050
[22] Lukyanov, A.G.; Utkin, V.I., Methods of reducing equations of dynamics systems to regular form, Automat. remote control, 42, 413-420, (1981) · Zbl 0466.93016
[23] N. Luo, M. de la Sen, State feedback sliding mode controls of a class of time-delay systems, Proceedings of the 1992 American Control Conference (ACC’92), Chicago, IL, USA, 1992, pp. 894-895.
[24] Manitius, A.; Olbrot, A.W., Finite spectrum assignment problem for systems with delays, IEEE trans. automat. control, 24, 4, 541-553, (1979) · Zbl 0425.93029
[25] S.K. Nguang, Robust H∞ control of a class of nonlinear systems with delayed state and control: a LMI approach, 37th IEEE Conference on Decision and Control (CDC’98), Tampa, FL, USA, 1998, pp. 2384-2389.
[26] Niculescu, S.I., H∞ memoryless control with an α-stability constraint for time delays systems: an LMI approach, IEEE trans. automat. control, 43, 5, 739-743, (1998) · Zbl 0911.93031
[27] Niculescu, S.I.; De Souza, C.E.; Dugard, L.; Dion, J.M., Robust exponential stability of uncertain systems with time-varying delays, IEEE trans. automat. control, 43, 5, 743-748, (1998) · Zbl 0912.93053
[28] Olbrot, A.W., A sufficiently large time delay in feedback loop must destroy exponential stability of any decay rate, IEEE trans. automat. control, 29, 367-368, (1984) · Zbl 0541.93059
[29] Picard, P.; Lafay, J.F.; Kucera, V., Model matching for linear systems with delays and 2-d systems, Automatica, 34, 2, (1998) · Zbl 0937.93007
[30] J.-P. Richard, Some trends and tools for the study of time-delay systems, Plenary lecture, Second IEEE-IMACS Conference on Computational Engineering in Systems Applications (CESA’98), Tunisia, 1998, pp. 27-43.
[31] Richard, J.P.; Gouaisbaut, F.; Perruquetti, W., Sliding mode control in the presence of delay, Kibernética, 37, 277-294, (2001) · Zbl 1265.93046
[32] Roh, Y.H.; Oh, J.H., Robust stabilization of uncertain input-delay systems by sliding mode control with delay compensation, Automatica, 35, 1681-1685, (1999)
[33] Shyu, K.K.; Yan, J.J., Robust stability of uncertain time-delay systems and its stabilization by variable structure control, Internat. J. control, 57, 237-246, (1993) · Zbl 0774.93066
[34] Tan, K.K.; Wang, Q.-K.; Lee, T.H., Finite spectrum assignment control of unstable time delay processes with relay tuning, Ind. eng. chem. res., 37, 4, 1351-1357, (1998)
[35] Utkin, V.I., Sliding modes in control optimization, CCES, (1992), Springer Berlin · Zbl 0748.93044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.