Descent numbers and major indices for the hyperoctahedral group. (English) Zbl 0995.05008

Authors’ abstract (extended): We introduce and study three new statistics on the hyperoctahedral group \(B_n\) and show that they give two generalizations of L. Carlitz’s identity [A combinatorial property of \(q\)-Eulerian numbers, Am. Math. Mon. 82, 51-54 (1975; Zbl 0296.05007)] for the descent number and major index over \(S_n\). This answers a question posed by D. Foata [personal communication, July 2000]: extend the (“Euler-Mahonian”) bivariate distribution of descent number and major idex to the hyperoctahedral group \(B_n\).


05A15 Exact enumeration problems, generating functions
20F55 Reflection and Coxeter groups (group-theoretic aspects)


Zbl 0296.05007
Full Text: DOI arXiv


[1] Adin, R.M.; Roichman, Y., The flag major index and group actions on polynomial rings, European J. combin., 22, 431-446, (2001) · Zbl 1058.20031
[2] Bergeron, F.; Favreau, L., Fourier transform for some semisimple algebras and harmonic analysis for probabilistic algorithms, Discrete math., 139, 19-32, (1995) · Zbl 0838.60005
[3] A. Björner, and, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Springer-Verlag, New York/Berlin, in press.
[4] Brenti, F., q-Eulerian polynomials arising from Coxeter groups, European J. combin., 15, 417-441, (1994) · Zbl 0809.05012
[5] Carlitz, L., A combinatorial property of q-Eulerian numbers, Amer. math. monthly, 82, 51-54, (1975) · Zbl 0296.05007
[6] Clarke, R.J.; Foata, D., Eulerian calculus. I. univariable statistics, European J. combin., 15, 345-362, (1994) · Zbl 0811.05069
[7] Clarke, R.J.; Foata, D., Eulerian calculus. II. an extension of Han’s fundamental transformation, European. J. combin., 16, 221-252, (1995) · Zbl 0822.05066
[8] Clarke, R.J.; Foata, D., Eulerian calculus. III. the ubiquitous Cauchy formula, European J. combin., 16, 329-355, (1995) · Zbl 0826.05058
[9] D. Foata, personal communication, July, 2000.
[10] Foata, D.; Han, G.N., Calcul basique des permutations signées. I. longueur et nombre d’inversions, Adv. appl. math., 18, 489-509, (1997) · Zbl 0870.05001
[11] Garsia, A., On the “maj“ and “inv” q-analogues of Eulerian polynomials, Linear multilinear algebra, 8, 21-34, (1979-1980) · Zbl 0442.05002
[12] I. M. Gessel, Generating Functions and Enumeration of Sequences, Ph.D. Thesis, M.I.T, 1977.
[13] Humphreys, J.E., Reflection groups and Coxeter groups, Cambridge studies in advanced mathematics, 29, (1990), Cambridge Univ. Press Cambridge
[14] MacMahon, P.A., Combinatory analysis, (1960), Chelsea New York · Zbl 0101.25102
[15] Reiner, V., Signed permutation statistics, European J. combin., 14, 553-567, (1993) · Zbl 0793.05005
[16] Reiner, V., Signed permutation statistics and cycle type, European J. combin., 14, 569-579, (1993) · Zbl 0793.05006
[17] Reiner, V., Upper binomial posets and signed permutation statistics, European J. combin., 14, 581-588, (1993) · Zbl 0793.05007
[18] Reiner, V., The distribution of descent and length in a Coxeter group, Electron. J. combin., 2, R25, (1995)
[19] Stanley, R.P., Binomial posets, Möbius inversion, and permutation enumeration, J. combin. theory ser. A, 20, 336-356, (1976) · Zbl 0331.05004
[20] Stanley, R.P., Enumerative combinatorics, (1986), Wadsworth and Brooks/Cole Monterey · Zbl 0608.05001
[21] Steingrimsson, E., Permutation statistics of indexed permutations, European J. combin., 15, 187-205, (1994) · Zbl 0790.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.