×

A note on the correspondence among entail relations, rough set dependencies, and logical consequence. (English) Zbl 0995.06001

Summary: We report that entail relations defined in the context of knowledge spaces are equivalent to the dependence relations of rough set data analysis and Tarski’s consequence relation of monotone logic. We also discuss the connection between these and related structures.

MSC:

06A15 Galois correspondences, closure operators (in relation to ordered sets)
91E40 Memory and learning in psychology
68T30 Knowledge representation
91E45 Measurement and performance in psychology
03B22 Abstract deductive systems
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Birkhoff, G., Lattice theory, (1948), Am. Math. Soc Providence · Zbl 0126.03801
[2] Davey, B.A.; Priestley, H.A., Introduction to lattices and order, (1990), Cambridge Univ. Press Cambridge · Zbl 0701.06001
[3] Doignon, J.P.; Falmagne, J.C., Knowledge spaces, (1999), Springer-Verlag Berlin
[4] Düntsch, I.; Gediga, G., On query procedures to build knowledge structures, Journal of mathematical psychology, 40, 160-168, (1996) · Zbl 0866.92030
[5] Düntsch, I.; Gediga, G., Algebraic aspects of attribute dependencies in information systems, Fundamenta informaticae, 29, 119-133, (1997) · Zbl 0868.68052
[6] Düntsch, I.; Gediga, G., Statistical evaluation of rough set dependency analysis, International journal of human – computer studies, 46, 589-604, (1997)
[7] Düntsch, I.; Gediga, G., Knowledge structures and their applications in CALL systems, (), 177-186
[8] Düntsch, I.; Gediga, G., Rough set data analysis, Encyclopedia of computer science and technology, (2000), Dekker New York · Zbl 0983.68194
[9] Falmagne, J.-C.; Koppen, M.; Villano, M.; Doignon, J.-P.; Johannesen, J., Introduction to knowledge spaces: how to build, test and search them, Psychological review, 97, 202-234, (1990)
[10] Farris, J.S., An efficient method for finding monothetic groups, Systematic zoology, 27, 468-472, (1978)
[11] Gabbay, D.M., Theoretical foundations for non – monotonic reasoning in expert systems, (), 439-457 · Zbl 0581.68068
[12] Ganter, B.; Wille, R., Formal concept analysis: mathematical foundations, (1999), Springer-Verlag Berlin · Zbl 0909.06001
[13] Grätzer, G., General lattice theory, (1978), Birkhäuser Basel · Zbl 0385.06015
[14] Koppen, M.; Doignon, J.-P., How to build a knowledge space by querying an expert, Journal of mathematical psychology, 34, 311-331, (1990) · Zbl 0725.92029
[15] Novotný, J.; Novotný, M., Notes on the algebraic approach to dependence in information systems, Fundamenta informaticae, 16, 263-273, (1992) · Zbl 0762.68058
[16] Novotný, J.; Novotný, M., On dependence in Wille’s contexts, Fundamenta informaticae, 19, 343-353, (1993) · Zbl 0781.68106
[17] Novotný, M., Dependence spaces of information systems, (), 193-246
[18] Orłowska, E., Incomplete information—rough set analysis, (1997), Physica-Verlag Heidelberg · Zbl 0886.68127
[19] Pawlak, Z., Rough sets, International journal of computer and information science, 11, 341-356, (1982) · Zbl 0501.68053
[20] Pawlak, Z.; Rauszer, C., Dependency of attributes in information systems, Bulletin Polish Academy of science and mathematics, 9-10, 551-559, (1985) · Zbl 0582.68065
[21] Rusch, A.; Wille, R., Knowledge spaces and formal concept analysis, (), 427-436 · Zbl 0899.92041
[22] Sharrock, G.; Felsenstein, J., Finding all monothetic subsets of a taxonomic group, Systematic zoology, 24, 373-377, (1975)
[23] Tarski, A., Fundamentale begriffe der methodologie der deduktiven wissenschaften, Monatshefte für Mathematik und physik, 37, 361-404, (1930) · JFM 56.0046.02
[24] Wille, R., Restructuring lattice theory: an approach based on hierarchies of concepts, (), 445-470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.