Numerical experiments in revisited brittle fracture. (English) Zbl 0995.74057

Summary: The numerical implementation of a model of brittle fracture developed by G. Francfort and J.-J. Marigo [ibid. 46, No. 8, 1319-1342 (1998; Zbl 0966.74060)] is presented. We examine various computational methods based on variational approximations of the original functional. They are tested on antiplanar and planar examples that are beyond the reach of the classical computational tools of fracture mechanics.


74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
74G65 Energy minimization in equilibrium problems in solid mechanics


Zbl 0966.74060
Full Text: DOI


[1] Ambrosio, L., Variational problems in SBV and image segmentation, Acta appl. math., 17, 1-40, (1989) · Zbl 0697.49004
[2] Ambrosio, L., A compactness theorem for a special class of functions of bounded variation, Boll. un. mat. ital., 3, B, 857-881, (1989) · Zbl 0767.49001
[3] Ambrosio, L., Existence theory for a new class of variational problems, Arch. rational mech. anal., 111, 1, 291-322, (1990) · Zbl 0711.49064
[4] Ambrosio, L.; Tortorelli, V.M., Approximation of functional depending on jumps by elliptic functionals via γ-convergence, Comm. pure appl. math., XLIII, 999-1036, (1990) · Zbl 0722.49020
[5] Ambrosio, L.; Tortorelli, V.M., On the approximation of free discontinuity problems, Boll. un. mat. ital., 7, 6B, 105-123, (1992) · Zbl 0776.49029
[6] Amestoy, M., 1987. Propagations de fissures en élasticité plane. Thèse d’Etat, Paris
[7] Amestoy, M.; Leblond, J-B., Crack path in plane situation—II, detailed form of the expansion of the stress intensity factors, Int. J. solids structures, 29, 4, 465-501, (1989) · Zbl 0755.73072
[8] Bellettini, G.; Coscia, A., Discrete approximation of a free discontinuity problem, Numer. funct. anal. optim., 15, 105-123, (1994) · Zbl 0808.49014
[9] Borouchaki, H., Laug, P., 1996. Maillage de courbes gouverné par une carte de métriques. Technical Report RR-2818, INRIA
[10] Bourdin, B., 1999. Image segmentation with a finite element method. RAIRO Modél. Math. Anal. Numér. 33 (2), 229-244 · Zbl 0947.65075
[11] Bourdin, B., 1998. Une formulation variationnelle en mécanique de la rupture, théorie et mise en œuvre numérique. Thèse de Doctorat, Université Paris Nord
[12] Bourdin, B., Chambolle, A., 1999. Implementation of an adaptive finite element approximation of the Mumford-Shah functional (in preparation) · Zbl 0961.65062
[13] Carriero, M.; Leaci, A., Existence theorem for a Dirichlet problem with free discontinuity set, Nonlinear anal., th. meth. appls., 15, 7, 661-677, (1990) · Zbl 0713.49003
[14] Chambolle, A., 1998. Finite differences discretizations of the Mumford-Shah functional. RAIRO Modél. Math. Anal. Numér. 33 (2), 261-288 · Zbl 0947.65076
[15] Chambolle, A., Dal Maso, G., 1998. Discrete approximation of the Mumford-Shah functional in dimension two. RAIRO Modél. Math. Anal. Numér. (in preparation) · Zbl 0943.49011
[16] De-Giorgi, E.; Carriero, M.; Leaci, A., Existence theorem for a minimum problem with free discontinuity set, Arch. rational mech. anal., 108, 195-218, (1989) · Zbl 0682.49002
[17] Ekeland, I.; Temam, R., Convex analysis and variational problems, (1976), North-Holland Amsterdam
[18] Finzi-Vita, S.; Perugia, P., Some numerical experiments on the variational approach to image segmentation, (), 233-240, (25-27 September)
[19] Francfort, G.; Marigo, J-J., Revisiting brittle fracture as an energy minimization problem, J. mech. phys. solids, 46, 8, 1319-1342, (1998) · Zbl 0966.74060
[20] Hull, D., 1981. An Introduction to Composite Materials. Cambridge University Press, Cambridge, Solid State Science Series
[21] Leblond, J-B., Crack paths in plane situation—I, general form of the expansion of the stress intensity factors, Int. J. solids structures, 25, 1311-1325, (1989) · Zbl 0703.73062
[22] Leguillon, D., Asymptotic and numerical analysis of a crack branching in non-isotropic materials, Eur. J. mech. A/solids, 12, 1, 33-51, (1993) · Zbl 0767.73053
[23] Modica, L.; Mortola, S., Un esempio di γ-convergenza, Boll. un. mat. ital., 14B, 285-299, (1977) · Zbl 0356.49008
[24] Mumford, D.; Shah, J., Optimal approximation by piecewise smooth functions and associated variational problems, Comm. pure appl. math., 42, 577-685, (1989) · Zbl 0691.49036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.