×

zbMATH — the first resource for mathematics

Chaotic attractors in delayed neural networks. (English) Zbl 0995.92004
Summary: This paper investigates the complex dynamical behavior of delayed neural networks with two neurons with the help of computer simulations. It has been shown that such networks may exhibit chaotic dynamics undergoing a period-doubling bifurcation process. In some parameter domains, interesting phenomena of coexistence of periodic orbits and chaotic attractors have been observed.

MSC:
92B20 Neural networks for/in biological studies, artificial life and related topics
37N25 Dynamical systems in biology
65C20 Probabilistic models, generic numerical methods in probability and statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hopfield, J.J., Proc. nat. acad. sci. U.S.A., 81, 3088, (1984)
[2] Marcus, C.M.; Westervelt, R.M., Phys. rev. A, 39, 229, (1989)
[3] Roska, T.; Chua, L.O., Int. J. circuit theory appl., 20, 469, (1992)
[4] Gopalsamy, K.; He, X.Z., Physica D, 76, 344, (1994)
[5] Belair, J.; Campbell, S.A.; van den Driessche, P., SIAM J. appl. math., 56, 245, (1996)
[6] Baldi, P.; Atiya, A.F., IEEE trans. neural networks, 5, 612, (1994)
[7] Cao, Y.J.; Wu, Q.H., IEEE trans. neural networks, 7, 1533, (1996)
[8] Zhang, Y., Int. J. systems sci., 27, 2, 227, (1996)
[9] Civalleri, P.P.; Gilli, M.; Pandolfi, L., IEEE trans. circuit systems I, 40, 157, (1993)
[10] Gilli, M., IEEE trans. circuit systems I, 40, 849, (1993)
[11] Gilli, M., IEEE trans. circuit systems I, 41, 518, (1994)
[12] Cao, J.; Zhou, D., Neural networks, 11, 1601, (1998)
[13] Cao, J., Phys. lett. A, 261, 303, (1999)
[14] Cao, J., Phys. lett. A, 267, 312, (2000)
[15] Cao, J., Phys. lett. A, 270, 157, (1999)
[16] Hale, J., Theory of functional differential equations, (1977), Springer New York
[17] Chua, L.O.; Komuro, M.; Matsumoto, T., IEEE trans. circuit systems, 33, 1073, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.