Modulated amplitude waves and defect formation in the one-dimensional complex Ginzburg-Landau equation. (English) Zbl 0996.35071

Summary: The transition from phase chaos to defect chaos in the complex Ginzburg-Landau equation (CGLE) is related to saddle-node bifurcations of modulated amplitude waves (MAWs). First, the spatial period \(P\) of MAWs is shown to be limited by a maximum \(P_{\text{SN}}\) which depends on the CGLE coefficients; MAW-like structures with period larger than \(P_{\text{SN}}\) evolve to defects. Second, slowly evolving near-MAWs with average phase gradients \(\nu\approx 0\) and various periods occur naturally in phase chaotic states of the CGLE. As a measure for these periods, we study the distributions of spacings \(p\) between neighbouring peaks of the phase gradient. A systematic comparison of \(p\) and \(P_{\text{SN}}\) as a function of coefficients of the CGLE shows that defects are generated at locations where \(p\) becomes larger than P\(_{SN}\). In other words, MAWs with period \(P_{\text{SN}}\) represent “critical nuclei” for the formation of defects in phase chaos and may trigger the transition to defect chaos. Since rare events where \(p\) becomes sufficiently large to lead to defect formation may only occur after a long transient, the coefficients where the transition to defect chaos seems to occur depend on system size and integration time. We conjecture that in the regime where the maximum period \(P_{\text{SN}}\) has diverged, phase chaos persists in the thermodynamic limit.


35Q55 NLS equations (nonlinear Schrödinger equations)
76F20 Dynamical systems approach to turbulence
35B32 Bifurcations in context of PDEs


Full Text: DOI arXiv


[1] Brusch, L; Zimmermann, M.G; van Hecke, M; Bär, M; Torcini, A, Phys. rev. lett., 85, 86, (2000)
[2] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, Berlin, 1984. · Zbl 0558.76051
[3] Cross, M.C; Hohenberg, P.C, Rev. mod. phys., 65, 851, (1993)
[4] P. Manneville, Dissipative Structures and Weak Turbulence, Academic Press, San Diego, 1990; T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical Systems Approach to Turbulence, Cambridge University Press, Cambridge, 1998. · Zbl 0714.76001
[5] I.S. Aranson, L. Kramer, The world of complex Ginzburg-Landau equation, Rev. Mod. Phys., in press. · Zbl 1205.35299
[6] Vince, J.M; Dubois, M, Physica D, 102, 93, (1997)
[7] Rabaud, M; Michalland, S; Couder, Y; Vallette, D.P; Jacobs, G; Gollub, J.P, Phys. rev. lett., Phys. rev. E, 55, 4274, (1997)
[8] Akamatsu, S; Faivre, G, Phys. rev. E, 58, 3302, (1998)
[9] Lücke, M; Barten, W; Kamps, M, Physica D, 61, 183, (1992)
[10] Liu, Y; Ecke, R.E, Phys. rev. lett., 78, 4391, (1997)
[11] Ouyang, Q; Flesselles, J.M; Ouyang, Q; Swinney, H.L; Li, G; Zhou, L.Q; Ouyang, Q, Nature, Phys. rev. lett., Phys. rev. lett., 85, 1650, (2000)
[12] Bot, P; Mutabazi, I, Eur. phys. J., B13, 141, (2000)
[13] Mukolobwiez, N; Chiffaudel, A; Daviaud, F; Burguete, J; Chaté, H; Daviaud, F; Mukolobwiez, N, Phys. rev. lett., Phys. rev. lett., 82, 3252, (1999)
[14] Wierschem, A; Linde, H; Velarde, M.G, Phys. rev. E, 62, 6522, (2000)
[15] Janiaud, B; Pumir, A; Bensimon, D; Croquette, V; Richter, H; Kramer, L, Physica D, 55, 269, (1992)
[16] A. Pumir, B.I. Shraiman, W. van Saarloos, P.C. Hohenberg, H. Chaté, M. Holen, in: C.D. Andereck, F. Hayot (Eds.), Ordered and Turbulent Patterns in Taylor-Couette Flow, Plenum Press, New York, 1992, p. 173. · Zbl 0759.35045
[17] Shraiman, B.I; Pumir, A; van Saarloos, W; Hohenberg, P.C; Chaté, H; Holen, M, Physica D, 57, 241, (1992)
[18] Bazhenov, M.V; Rabinovich, M.I; Fabrikant, A.L, Phys. lett. A, 163, 87, (1994)
[19] P.E. Cladis, Palffy-Muhoray (Eds.), Spatio-Temporal Pattern Formation in Nonequilibrium Complex Systems, Addison Wesley, Reading, 1995, p. 33.
[20] Sakaguchi, H, Prog. theor. phys., 84, 792, (1990)
[21] Egolf, D.A; Greenside, H.S, Phys. rev. lett., 74, 1751, (1995)
[22] Montagne, R; Hernández-Garcı́a, E; San Miguel, M; Montagne, R; Hernández-Garcı́a, E; Amengual, A; San Miguel, M, Phys. rev. lett., Phys. rev. E, 55, 151, (1997)
[23] Torcini, A; Torcini, A; Frauenkron, H; Grassberger, P, Phys. rev. lett., Phys. rev. E, 55, 5073, (1997)
[24] van Saarloos, W; Hohenberg, P.C; van Saarloos, W; Hohenberg, P.C, Physica D, Physica D, 69, 209, (1993), [Errata]
[25] van Hecke, M, Phys. rev. lett., 80, 1896, (1998)
[26] Giacomelli, G; Hegger, R; Politi, A; Vassalli, M, Phys. rev. lett., 85, 3616, (2000)
[27] Manneville, P; Chaté, H, Physica D, 96, 30, (1996)
[28] Nozaki, K; Bekki, N, J. phys. soc. jpn., 53, 1581, (1984)
[29] van Hecke, M; Howard, M, Phys. rev. lett., 86, 2018, (2001)
[30] G. Hager, Quasiperiodische Lösungen der eindimensionalen komplexen Ginzburg-Landau Gleichung, Diploma Thesis, University of Bayreuth, Germany, 1996.
[31] L. Brusch, A. Torcini, M. Bär, Physica D, submitted for publication.
[32] E.J. Doedel, X.J. Wang, T.F. Fairgrieve, AUTO94: Software for continuation and bifurcation problems in ordinary differential equations, Applied Mathematics Report, California Institute of Technology, 1994.
[33] Kness, M; Tuckerman, L; Barkley, D, Phys. rev. A, 46, 5054, (1992)
[34] G. Iooss, D.D. Joseph, Elementary Stability and Bifurcation Theory, Springer, Berlin, 1980 (Chapter 3). · Zbl 0443.34001
[35] Chang, H.-C; Demekhin, E.A; Kalaidin, E; Chang, H.-C; Demekhin, E.A; Kopelevich, D.I, SIAM J. appl. math., Physica D, 63, 299, (1993)
[36] M. Abel, H. Chaté, H. Voss, in preparation.
[37] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York, 1976.; P. Collet, J.-P. Eckmann, Instabilities and Fronts in Extended Systems, Princeton University Press, 1990.
[38] Or-Guil, M; Kevrekidis, I.G; Bär, M, Physica D, 135, 154, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.