# zbMATH — the first resource for mathematics

A sum analogous to the Dedekind sum and its mean value formula. (English) Zbl 0997.11076
Let $$((x))= x-[x]- \frac{1}{2}$$ if $$x$$ is not an integer, and let $$((x))=0$$ otherwise. The sum in the title, originally introduced by Hardy, is defined by $S_2(h,k)= \sum_{a=1}^k (-1)^a \biggl(\biggl( \frac{a}{k} \biggr)\biggr) \biggl(\biggl( \frac{ah}{k} \biggr)\biggr).$ For even $$k$$ it can be expressed in terms of the classical Dedekind sum $$S(h,k)$$ by the relation $S_2(h,k)= 2S(h,k/2)- S(h,k).$ The author uses some of his earlier work on $$S(h,k)$$ to deduce corresponding results for $$S_2(h,k)$$. A corollary of the main theorem gives, for an odd prime $$p$$, $\mathop{{\sum}'}_{h=1}^{2p} |S_2(h,2p)|^2= \frac{1}{32} p^2+ O\Biggl(p\exp \biggl( \frac{4\log p}{\log\log p} \biggr)\Biggr).$

##### MSC:
 11N37 Asymptotic results on arithmetic functions 11F20 Dedekind eta function, Dedekind sums
##### Keywords:
mean value formula; asymptotic result; Hardy sum; Dedekind sum
Full Text:
##### References:
 [1] Apostol, T.M., Introduction to analytic number theory, (1976), Springer-Verlag New York · Zbl 0335.10001 [2] Apostol, T.M., Modular functions and Dirichlet series in number theory, (1976), Springer-Verlag New York · Zbl 0332.10017 [3] Berndt, B.C., Analytic Eisenstein series, theta-function, and series relations in the spirit of Ramanujan, J. reine angew. math., 303/304, 332-365, (1978) · Zbl 0384.10011 [4] Carlitz, L., The reciprocity theorem of Dedekind sums, Pacific J. math., 3, 513-522, (1953) · Zbl 0057.03701 [5] Conrey, J.B.; Fransen, E.; Klein, R.; Scott, C., Mean values of Dedekind sums, J. number theory, 56, 214-226, (1996) · Zbl 0851.11028 [6] Gandhi, J.M., On sums analogous to Dedekind sums, Proc. fifth manitoba conf. numerical math., winnipeg, manitoba, (1975), p. 647-655 [7] Rademacher, H., On the transformation of logη(τ), J. Indian. math. soc., 19, 25-30, (1955) · Zbl 0064.32703 [8] Rademacher, H., Generalization of the reciprocity formula for Dedekind sums, Duke J. math., 21, 391-397, (1954) · Zbl 0057.03801 [9] Hardy, G.H., On certain series of discontinuous functions connected with the modular functions, Quart. J. math., 36, 93-123, (1905) · JFM 35.0468.03 [10] Walum, H., An exact formula for an average of L-series, Illinois J. math., 26, 1-3, (1982) · Zbl 0464.10030 [11] Zhang, W., On the Mean values of Dedekind sums, J. theor. nombres, 8, 429-442, (1996) · Zbl 0871.11033 [12] Zhang, W., A note on the Mean square value of the Dedekind sums, Acta math. hungar., 86, 275-289, (2000) · Zbl 0963.11049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.