×

zbMATH — the first resource for mathematics

A systematic statistical linear modeling approach to oligonucleotide array experiments. (English) Zbl 0997.62087
Summary: We outline and describe steps for a statistically rigorous approach to analyzing probe-level Affymetrix GeneChip data. The approach employs classical linear mixed models and operates on a gene-by-gene basis. Forgoing any attempts at gene presence or absence calls, the method simultaneously considers the data across all chips in an experiment. Primary output includes precise estimates of fold change (some as low as 1.1), their statistical significance, and measures of array and probe variability. The method can accommodate complex experiments involving many kinds of treatments and can test for their effects at the probe level. Furthermore, mismatch probe data can be incorporated in different ways or ignored altogether. Data from an ionizing radiation experiment on human cell lines illustrate the key concepts.

MSC:
62P10 Applications of statistics to biology and medical sciences; meta analysis
92D10 Genetics and epigenetics
Software:
SAS/STAT; SAS; SASmixed; sma
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Dudoit, Y.H. Yang, M.J. Callow, T.P. Speed, Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments, Technical Paper, University of California, Berkeley, CA, 2000 · Zbl 1004.62088
[2] B. Efron, R. Tibshirani, V. Goss, G. Chu, Microarrays and their use in a comparative experiment, Technical Report, Stanford University, 2000
[3] Jin, W.; Riley, R.; Wolfinger, R.D.; White, K.P.; Passador-Gurgel, G.; Gibson, G., Contributions of sex, genotype and age to transcriptional variance in drosophila melanogaster, Nat. genet., 29, 389, (2001)
[4] Kerr, M.K.; Martin, M.; Churchill, G.A., Analysis of variance for gene expression microarray data, J. computat. biol., 7, 819, (2000)
[5] E.N. Lazaridis, D. Sinibaldi, G. Bloom, S. Mane, R. Jove, A Simple method to improve probe set estimates from oligonucleotide arrays, University of South Florida, 2001 · Zbl 0997.62089
[6] Li, C.; Wong, W.H., Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection, Proc. nat. acad. sci. USA, 98, 31, (2001) · Zbl 0990.62091
[7] Li, C.; Wong, W.H., Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application, Genome biol., 2, research0032.1, (2001)
[8] Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D., SAS system for mixed models, (1996), SAS Institute Cary, NC
[9] Lockhart, D.; Dong, H.; Byrne, M.; Follettie, M.; Gallo, M.; Chee, M.; Mittmann, M.; Wang, C.; Kobayashi, M.; Horton, H.; Brown, E.L., Expression monitoring by hybridization to high-density oligonucleotide arrays, Nat. biotechnol., 14, 1675, (1996)
[10] McCulloch, C.E.; Searle, S.R.; Generalized, Linear and mixed models, (2001), Wiley New York, NY
[11] SAS Institute Inc., SAS/STAT Software Version 8, SAS Institute, Cary, NC, 1999
[12] Schadt, E.E.; Li, C.; Su, C.; Wong, W.H., Analyzing high-density oligonucleotide gene expression array data, J. cell biochem., 80, 192, (2000)
[13] Steel, R.G.D.; Torrie, J.H.; Dickey, D.A., Principles and procedures of statistics: a biometrical approach, (1997), McGraw-Hill New York
[14] Tusher, V.; Tibshirani, R.; Chu, G., Significance analysis of microarrays applied to the ionizing radiation response, Proc. nat. acad. sci., 98, 5116, (2001) · Zbl 1012.92014
[15] Verbeke, G.; Molenberghs, G., Linear mixed models for longitudinal data, (2000), Springer New York, NY · Zbl 0956.62055
[16] Wolfinger, R.D.; Gibson, G.; Wolfinger, E.D.; Bennett, L.; Hamadeh, H.; Bushel, P.; Afshari, C.; Paules, R.S., Assessing gene significance from cdna microarray expression data via mixed model, J. computat. biol., 8, 625, (2001)
[17] Yang, Y.H.; Dudoit, S.; Luu, P.; Speed, T.P., Normalization for cdna microarray data. technical paper, (2001), University of California Berkeley, CA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.