×

Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians. (English) Zbl 0997.81031

Summary: We examine the properties and consequences of pseudo-supersymmetry for quantum systems admitting a pseudo-Hermitian Hamiltonian. We explore the Witten index of pseudo-supersymmetry and show that every pair of diagonalizable (not necessarily Hermitian) Hamiltonians with discrete spectra and real or complex-conjugate pairs of eigenvalues are isospectral and have identical degeneracy structure, except perhaps for the zero eigenvalue if and only if they are pseudo-supersymmetric partners. This implies that pseudo-supersymmetry is the basic framework for generating non-Hermitian PT-symmetric and non-PT-symmetric Hamiltonians with a real spectrum via a Darboux transformation, and shows that every diagonalizable Hamiltonian H with a discrete spectrum and real or complex-conjugate pairs of eigenvalues may be factored as \(H=L^{\sharp}L\) where \(L\) is a linear operator with pseudo-adjoint \(L^{\sharp}\). In particular, this factorization applies to PT-symmetric and Hermitian Hamiltonians. The non-degenerate two-level systems provide a class of Hamiltonians that are pseudo-Hermitian. We demonstrate the implications of our general results for this class in some detail.

MSC:

81Q60 Supersymmetry and quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Mostafazadeh, A., J. math. phys., 43, 205, (2002)
[2] Mostafazadeh, A., J. math. phys., 43, 2814, (2002)
[3] Mostafazadeh, A., Pseudo-hermiticity versus PT-symmetry III: equivalence of pseudo-hermiticity and the presence of antilinear symmetries, J. Math. Phys., to appear · Zbl 1061.81075
[4] Bender, C.M.; Boettcher, S.; Fernández, F.M.; Guardiola, R.; Ros, J.; Znojil, M.; Bender, C.M.; Boettcher, S.; Meisenger, P.N.; Bender, C.M.; Dunne, G.V.; Meisenger, P.N.; Bender, C.M.; Dunne, G.V.; Mezincescu, G.A.; Delabaere, E.; Trinh, D.T.; Khare, A.; Mandal, B.P.; Znojil, M.; Tater, M.; Bender, C.M.; Dunne, G.V.; Meisenger, P.N.; Şimşek, M.; Ahmed, Z.; Ahmed, Z.; Dorey, P.; Dunning, C.; Tateo, R.; Bagchi, B.; Quesne, C.; Shin, K.C.; Shin, K.C.; Mondal, C.K.; Maji, K.; Bhattacharyya, S.P.; Japaridze, G.S.; Kretschmer, R.; Szymanowski, L., The interpretation of quantum-mechanical models with non-Hermitian Hamiltonians and real spectra, Phys. rev. lett., J. phys. A: math. gen, J. math. phys., Phys. lett. A, J. math. phys., J. phys. A: math. gen., J. phys. A: math. gen., Phys. lett. A, J. phys. A: math. gen., Phys. lett. A, Phys. lett. A, Phys. lett. A, J. phys. A: math. gen., Mod. phys. lett. A, J. math. phys., Phys. lett. A, J. phys. A: math. gen., 35, 1709, (2002)
[5] Cannata, F.; Junker, G.; Trost, J., Phys. lett. A, 246, 219, (1998)
[6] Andrianov, A.A.; Ioffe, M.V.; Cannata, F.; Dedonder, J.-P., Int. J. mod. phys. A, 14, 2675, (1999)
[7] Znojil, M.; Cannata, F.; Bagchi, B.; Roychoudhury, R., Phys. lett. B, 483, 284, (2000)
[8] Bagchi, B.; Cannata, F.; Quesne, C., Phys. lett. A, 269, 79, (2000)
[9] Bagchi, B.; Roychoudhury, R., J. phys. A: math. gen., 33, L1-L3, (2000) · Zbl 0967.81016
[10] Bagchi, B.; Mallik, S.; Quesne, C., Int. J. mod. phys. A, 16, 2859, (2001)
[11] Cannata, F.; Ioffe, M.; Roychoudhury, R.; Roy, P., Phys. lett. A, 281, 305, (2001) · Zbl 0984.81041
[12] Tkachuk, V.M.; Fityo, T.V., J. phys. A: math. gen., 34, 8673, (2001)
[13] Bagchi, B.; Quesne, C., PT-symmetric non-polynomial oscillators and hyperbolic potential with two known real eigenvalues in a susy framework · Zbl 1083.81600
[14] Milanović, V.; Ikonić, Z., Phys. lett. A, 293, 29, (2002)
[15] Ahmed, Z., Phys. lett. A, 290, 19, (2001)
[16] Klishevich, S.M.; Plyushchay, M., Nucl. phys. B, 628, 217, (2002)
[17] Gendenshtein, L.E.; Krive, I.V.; Junker, G., Sov. phys. usp., Supersymmetric methods in quantum and statistical physics, 28, 645-666, (1996), Springer-Verlag Berlin
[18] Cooper, F.; Khare, A.; Sukhatme, U., Phys. rep., 251, 267-385, (1995)
[19] Samani, K.Aghababaei; Mostafazadeh, A., Nucl. phys. B, 595, 467, (2001)
[20] Wong, J.; Faisal, F.H.M.; Moloney, J.V., J. math. phys., J. phys. B: at. mol. phys., 14, 3603, (1981)
[21] Gelfand, I.M.; Shilov, G.E., Lectures on linear algebra, Linear algebra, (1977), Dover New York
[22] Mostafazadeh, A., On a factorization of symmetric matrices and antilinear symmetries
[23] Mostafazadeh, A., Nucl. phys. B, 624, 500, (2002)
[24] Dattoli, G.; Torre, A.; Magnani, R., Phys. rev. A, 42, 1467, (1990)
[25] Kvitsinsky, A.; Putterman, S., J. math. phys., 32, 1403, (1991)
[26] Mondragón, A.; Hernández, E., J. phys. A: math. gen., 29, 2567, (1996) · Zbl 0904.58065
[27] Mostafazadeh, A., J. math. phys., 40, 3311, (1999)
[28] Mostafazadeh, A., Dynamical invariants, adiabatic approximation, and the geometric phase, (2001), Nova New York · Zbl 0971.82029
[29] Mostafazadeh, A., J. phys. A: math. gen., 34, 8601, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.