×

zbMATH — the first resource for mathematics

Adaptive NN control of uncertain nonlinear pure-feedback systems. (English) Zbl 0998.93025
This paper deals with the control of nonlinear pure-feedback systems with unknown nonlinear function. Adaptive neural network control schemes are proposed for such systems. Under mild assumptions on the partial derivatives of the unknown functions, the developed control scheme achieves semi-global uniform ultimate boundedness of all signals in the closed loop.

MSC:
93C40 Adaptive control/observation systems
92B20 Neural networks for/in biological studies, artificial life and related topics
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Apostol, T.M., Mathematical analysis, (1963), Addison-Wesley Reading, MA · Zbl 0126.28202
[2] Chen, F.C.; Khalil, H.K., Adaptive control of a class of nonlinear discrete-time systems using neural networks, IEEE transactions on automatic control, 40, 5, 791-801, (1995) · Zbl 0925.93461
[3] Dong, X.; Chen, G.; Chen, L., Adaptive control of the uncertain Duffing oscillator, International journal of bifurcation and chaos, 7, 7, 1651-1658, (1997) · Zbl 0967.93512
[4] Ferrara, A.; Giacomini, L., Control of a class of mechanical systems with uncertainties via a constructive adaptive/second order VSC approach, Transactions of ASME, journal of dynamic systems, measurement and control, 122, 1, 33-39, (2000)
[5] Freeman, R.A.; Kokotovic̀, P., Robust nonlinear control design, (1996), Birkhäuser Boston
[6] Ge, S.S.; Hang, C.C.; Zhang, T., Adaptive neural network control of nonlinear systems by state and output feedback, IEEE transactions on systems, man and cybernetics—part B cybernetics, 29, 6, 818-828, (1999)
[7] Ge, S. S., Hang, C. C., Lee, T. H., & Zhang, T. (2001). Stable adaptive neural network control. Kluwer Academic (in Press). · Zbl 1001.93002
[8] Haykin, S., Neural networks: A comprehensive foundation, (1999), Prentice-Hall Englewood Cliffs, NJ · Zbl 0934.68076
[9] Hunt, L.R.; Meyer, G., Stable inversion for nonlinear systems, Automatica, 33, 8, 1549-1554, (1997) · Zbl 0890.93046
[10] Jiang, Z.P.; Praly, L., Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties, Automatica, 34, 7, 825-840, (1998) · Zbl 0951.93042
[11] Kanellakopoulos, I.; Kokotovic, P.V.; Morse, A.S., Systematic design of adaptive controller for feedback linearizable systems, IEEE transactions on automatic control, 36, 11, 1241-1253, (1991) · Zbl 0768.93044
[12] Krstic̀, M.; Kanellakopoulos, I.; Kokotovic̀, P.V., Adaptive nonlinear control without overparameterization, Systems and control letters, 19, 177-185, (1992) · Zbl 0763.93043
[13] Krstic̀, M.; Kanellakopoulos, I.; Kokotovic̀, P., Nonlinear and adaptive control design, (1995), Wiley New York · Zbl 0763.93043
[14] Lewis, F.L.; Jagannathan, S.; Yeildirek, A., Neural network control of robot manipulators and nonlinear systems, (1999), Taylor & Francis London
[15] Nam, K.; Arapostations, A., A model-reference adaptive control scheme for pure-feedback nonlinear systems, IEEE transactions on automatic control, 33, 803-811, (1988) · Zbl 0649.93040
[16] Narendra, K.S.; Parthasarathy, K., Identification and control of dynamic systems using neural networks, IEEE transactions on neural networks, 1, 1, 4-27, (1990)
[17] Pan, Z.; Basar, T., Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems, IEEE transactions on automatic control, 43, 8, 1066-1083, (1998) · Zbl 0957.93046
[18] Polycarpou, M. M., & Ioannou, P. A. (1992). Modeling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks. Proceedings of American Control Conference (pp. 36-40). Boston, MA.
[19] Polycarpou, M.M.; Mears, M.J., Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators, International journal of control, 70, 3, 363-384, (1998) · Zbl 0945.93563
[20] Rovithakis, G.A.; Christodoulou, M.A., Adaptive control of unknown plants using dynamical neural networks, IEEE transactions on systems, man, cybernetics, 24, 400-412, (1994) · Zbl 1371.93112
[21] Sanner, R.M.; Slotine, J.E., Gaussian networks for direct adaptive control, IEEE transactions on neural networks, 3, 6, 837-863, (1992)
[22] Seto, D.; Annaswamy, A.M.; Baillieul, J., Adaptive control of nonlinear systems with a triangular structure, IEEE transactions on automatic control, 39, 1411-1428, (1994) · Zbl 0806.93034
[23] Spooner, J.T.; Passino, K.M., Stable adaptive control using fuzzy systems and neural networks, IEEE transactions on fuzzy systems, 4, 3, 339-359, (1996)
[24] Yao, B.; Tomizuka, M., Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form, Automatica, 33, 893-900, (1997) · Zbl 0876.93083
[25] Yesidirek, A.; Lewis, F.L., Feedback linearization using neural networks, Automatica, 31, 11, 1659-1664, (1995) · Zbl 0847.93032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.