×

zbMATH — the first resource for mathematics

Powers of t-norms. (English) Zbl 1001.03050
Summary: We consider the \(r\)th powers of a continuous t-norm for positive real numbers \(r\), generalizing the notion of the diagonal (2nd power). We identify the increasing functions from the unit interval to itself that are realized as the \(r\)th power of some continuous t-norm. The strict and nilpotent cases are described in detail.

MSC:
03E72 Theory of fuzzy sets, etc.
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abel, N., Untersuchungen der funktionen zweier unabhängig veränderlichen grössen x und y, welche eigenschaft haben, dass f(z,f(x,y)) eine symmetrische funktion von x,y und z ist, J. reine angew. math., 1, 11-15, (1826)
[2] Gehrke, M.; Walker, C.; Walker, E., Demorgan systems on the unit interval, Internat. J. intell. systems, 11, 733-750, (1996) · Zbl 0865.04005
[3] Gehrke, M.; Walker, C.; Walker, E., A mathematical setting for fuzzy logics, Internat. J. uncertainty fuzziness knowledge-based systems, 5, 3, 223-238, (1997) · Zbl 1232.03016
[4] Gehrke, M.; Walker, C.; Walker, E., A note on negations and nilpotent t-norms, Internat. J. approx. reasoning, (1999) · Zbl 0992.03034
[5] Klement, E.P.; Mesiar, K.; Pap, E., Triangular norms, Trends in logic, studia logica library, (2000), Kluwer Academic Publishers Dordrecht
[6] Ling, C.H., Representation of associative functions, Publ. math. debrecen, 12, 182-212, (1965) · Zbl 0137.26401
[7] Mesiar, R.; Navara, M., Diagonals of continuous triangular norms, Fuzzy sets and systems, 104, 1, 35-41, (1999) · Zbl 0972.03052
[8] Nguyen, H.; Walker, E., A first course in fuzzy logic, (1997), CRC Press Boca Raton, FL · Zbl 0856.03019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.