Generalized Lie bialgebroids and Jacobi structures. (English) Zbl 1001.17025

The authors introduce and investigate a deformation of the notion of a Lie algebroid and Lie bialgebroid in the sense of K. Mackenzie and P. Xu [Duke Math. J. 73, 415-452 (1994; Zbl 0844.22005)] in the presence of 1-cocyles in such a way that any Jacobi manifold induces a canonical generalized Lie bialgebroid. More precisely, let \([\cdot,\cdot]\) be a Lie algebroid bracket on a vector bundle \(A\) over \(M\), and let \(\varphi_0\in\Gamma(A^*)\) be a 1-cocycle, i.e. \(\text{d}\varphi_0=0\) for the corresponding de Rham exterior differential \(\text{d}\). Then, one can consider the deformed \(\varphi_0\)-differential \[ \text{d}_{\varphi_0}\omega=\text{d}\omega+\varphi_0\wedge \omega \] and the corresponding \(\varphi_0\)-Lie derivative \({\mathcal L}_{\varphi_0}\). One can also obtain accordingly the \(\varphi_0\)-Schouten bracket \([\cdot,\cdot]_{\varphi_0}\). The pair \(((A,\varphi_0),(A^*,X_0))\) of generalized Lie algebroids is called a generalized Lie bialgebroid if for all \(\mu\in\Gamma(\bigwedge^kA^*)\), \(\nu\in\Gamma(\bigwedge^l A^*)\) \[ \text{d}_{\varphi_0}[\mu,\nu]_{X_0}=[\text{d}_{\varphi_0}\mu ,\nu]_{X_0}-(-1)^k[\mu,\text{d}_{\varphi_0}\nu]_{X_0} \] (in fact, in the paper a different but equivalent condition is given). Now, let \((\Lambda,E)\) be a Jacobi structure on \(M\). Then, the induced canonical Lie algebroid structure on \(A=T^*M\oplus{\mathbb R}\) discovered by Y. Kerbrat and Z. Souici-Benhammadi [C. R. Acad. Sci., Paris, Sér. I 317, 81-86 (1993; Zbl 0804.58015)] with the 1-cocycle \(\varphi_0((\mu,f)) =-E(\mu)\) forms a generalized Lie bialgebroid with the generalized Lie algebroid \((TM\oplus{\mathbb R},X_0)\), where on \(A^*=TM\oplus{\mathbb R}\) we take the Lie algebroid structure of first-order differential operators \[ [(Y_1+g_1),(Y_2+g_2)]=[Y_1,Y_2]+(Y_1(g_2)-Y_2(g_1)) \] and the 1-cocycle is \(X_0((Y,g))=g\). As a kind of converse, it is proved that on the base of any generalized Lie bialgebroid a Jacobi structure is determined.
It is also shown that it is possible to construct a Lie bialgebroid from a generalized Lie bialgebroid, so a duality theorem can be deduced. Finally, some special cases are considered: triangular generalized Lie bialgebroids and generalized Lie bialgebras.


17B62 Lie bialgebras; Lie coalgebras
53D17 Poisson manifolds; Poisson groupoids and algebroids
53D10 Contact manifolds (general theory)
Full Text: DOI arXiv


[1] K.H. Bhaskara, K. Viswanath, Poisson algebras and Poisson manifolds, Research Notes in Mathematics, Vol. 174, Pitman, London, 1988. · Zbl 0671.58001
[2] A. Coste, P. Dazord, A. Weinstein, Groupoı̈des symplectiques, Pub. Dép. Math. Lyon, Vol. 2/A, 1987, pp. 1-62.
[3] Courant, T.J., Dirac manifolds, Trans. AMS, 319, 631-661, (1990) · Zbl 0850.70212
[4] Dazord, P.; Lichnerowicz, A.; Marle, Ch.M., Structure locale des variétés de Jacobi, J. math. pures appl., 70, 101-152, (1991) · Zbl 0659.53033
[5] Drinfeld, V.G., Hamiltonian Lie groups, Lie bialgebras and the geometric meaning of the classical yang – baxter equation, Sov. math. dokl., 27, 68-71, (1983) · Zbl 0526.58017
[6] V.G. Drinfeld, Quantum groups, in: Proceedings of the International Congress on Mathematics, Vol. 1, Berkeley, 1986, pp. 789-820.
[7] Fuchssteiner, B., The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems, Prog. theoret. phys., 68, 1082-1104, (1982) · Zbl 1098.37540
[8] Grabowski, J.; Urbánski, P., Tangent lifts of Poisson and related structures, J. phys. A, 28, 6743-6777, (1995) · Zbl 0872.58028
[9] Guédira, F.; Lichnerowicz, A., Géométrie des algébres de Lie locales de Kirillov, J. math. pures appl., 63, 407-484, (1984) · Zbl 0562.53029
[10] Higgins, P.J.; Mackenzie, K., Algebraic constructions in the category of Lie algebroids, J. algebra, 129, 194-230, (1990) · Zbl 0696.22007
[11] Ibáñez, R.; de León, M.; Marrero, J.C.; Martı́n de Diego, D., Co-isotropic and legendre – lagrangian submanifolds and conformal Jacobi morphisms, J. phys. A, 30, 5427-5444, (1997) · Zbl 0947.53041
[12] D. Iglesias, J.C. Marrero, Some linear Jacobi structures on vector bundles, C.R. Acad. Sci., Paris I 331 (2000) 125-130. arXiv: math.DG/0007138. · Zbl 0983.53055
[13] D. Iglesias, J.C. Marrero, Generalized Lie bialgebras and Jacobi structures on Lie groups, Preprint, 2001. arXiv: math.DG/0102171. · Zbl 1059.17014
[14] Y. Kerbrat, Z. Souici-Benhammadi, Variétés de Jacobi et groupoı̈des de contact, C.R. Acad. Sci., Paris I 317 (1993) 81-86. · Zbl 0804.58015
[15] Kirillov, A., Local Lie algebras, Russian math. surveys, 31, 55-75, (1976) · Zbl 0357.58003
[16] Kosmann-Schwarzbach, Y., Exact gerstenhaber algebras and Lie bialgebroids, Acta appl. math., 41, 153-165, (1995) · Zbl 0837.17014
[17] Kosmann-Schwarzbach, Y.; Magri, F., Poisson Lie groups and complete integrability. I. Drinfeld bigebras, dual extensions and their canonical representations, Ann. inst. H. Poincaré phys. théoret., 49, 433-460, (1988) · Zbl 0667.16005
[18] M. de León, B. López, J.C. Marrero, E. Padrón, Lichnerowicz-Jacobi cohomology and homology of Jacobi manifolds: modular class and duality, Preprint, 1999. arXiv: math.DG/9910079.
[19] de León, M.; Marrero, J.C.; Padrón, E., On the geometric quantization of Jacobi manifolds, J. math. phys., 38, 12, 6185-6213, (1997) · Zbl 0898.58024
[20] P. Libermann, Ch.M. Marle, Symplectic Geometry and Analytical Mechanics, Kluwer Academic Publishers, Dordrecht, 1987. · Zbl 0643.53002
[21] Lichnerowicz, A., LES variétés de Poisson et leurs algébres de Lie associées, J. diff. geom., 12, 253-300, (1977) · Zbl 0405.53024
[22] Lichnerowicz, A., LES variétés de Jacobi et leurs algébres de Lie associées, J. math. pures appl., 57, 453-488, (1978) · Zbl 0407.53025
[23] Lu, J.-H.; Weinstein, A., Poisson Lie groups, dressing transformations and Bruhat decompositions, J. diff. geom., 31, 501-526, (1990) · Zbl 0673.58018
[24] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge University Press, Cambridge, 1987. · Zbl 0683.53029
[25] Mackenzie, K.; Xu, P., Lie bialgebroids and Poisson groupoids, Duke math. J., 73, 415-452, (1994) · Zbl 0844.22005
[26] Ngô-van-Quê, Sur l’espace de prolongement différentiable, J. Diff. Geom. 2 (1968) 33-40. · Zbl 0164.22604
[27] Pradines, J., Théorie de Lie pour LES groupoı̈des différentiables, calcul différentiel dans la catégorie des groupoı̈des infinitésimaux, C.R. acad. sci., Paris A, 264, 245-248, (1967) · Zbl 0154.21704
[28] G. Sánchez de Alvarez, Geometric methods of classical mechanics applied to control theory, Ph.D. Thesis, University of California, Berkeley, 1986.
[29] Vaisman, I., Remarkable operators and commutation formulas on locally conformal Kähler manifolds, Compositio math., 40, 287-299, (1980) · Zbl 0401.53019
[30] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathemaics, Vol. 118, Birkhauser, Basel, 1994. · Zbl 0810.53019
[31] I. Vaisman, The BV-algebra of a Jacobi manifold, Ann. Polon. Math. 73 (2000) 275-290. arXiv: math.DG/9904112. · Zbl 0989.53050
[32] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983) 523-557; Errata and Addenda 22 (1985) 255. · Zbl 0524.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.