Large deviations asymptotics for spherical integrals. (English) Zbl 1002.60021

Authors’ summary: Consider the spherical integral \[ I^{(\beta)}_N(D_N,E_N):=\int\exp\{N\text{tr}(UD_NU^*E_N)\} dm^\beta_N(U), \] where \(m^\beta_N\) denotes the Haar measure on the orthogonal group \({\mathcal O}_N\) when \(\beta=1\) and on the unitary group \({\mathcal U}_N\) when \(\beta=2\), and \(D_N\), \(E_N\) are diagonal real matrices whose spectral measures converge to \(\mu_D\), \(\mu_E\). We prove the existence and represent as solution to a variational problem the limit \(I^{(\beta)}(\mu_D,\mu_E):=\lim N^{-2}\log I^{(\beta)}_N(D_N,E_N)\). This limit appears in so-called “matrix models” but also in the evaluation of large deviations of the spectral measure of generalized Wishart matrices. Our technique is based on stochastic calculus, large deviations, and elements from free probability.


60F10 Large deviations
46L51 Noncommutative measure and integration
46L54 Free probability and free operator algebras
15B52 Random matrices (algebraic aspects)
Full Text: DOI


[1] Arous, G.Ben; Guionnet, A., Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Probab. theory related fields, 108, 517-542, (1997) · Zbl 0954.60029
[2] Bercovici, H.; Voiculescu, D., Free convolution of measures with unbounded support, Indiana univ. math. J., 42, 733-773, (1993) · Zbl 0806.46070
[3] Biane, P.; Speicher, R., Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, Probab. theory related fields, 112, 373-409, (1998) · Zbl 0919.60056
[4] Biane, P.; Speicher, R., Free diffusions, free entropy and free Fisher information, Ann. inst. H. Poincaré probab. statist., 37, 581-606, (2001) · Zbl 1020.46018
[5] Cabanal-Duvillard, T., Fluctuations de la loi empirique des grandes matrices aléatoires, Ann. inst. H. Poincaré probab. statist., 37, 373-402, (2001) · Zbl 1016.15020
[6] Cabanal-Duvillard, T.; Guionnet, A., Large deviations upper bounds and non commutative entropies for some matrices ensembles, Annals probab., (2001) · Zbl 1022.60026
[7] Cabanal-Duvillard, T.; Guionnet, A., Discussions around non-commutative entropies, Adv. in math., (2002) · Zbl 1022.60026
[8] Chadha, S.; Madhoux, G.; Mehta, M.L., A method of integration over matrix variables II, J. phys. A., 14, 579-586, (1981)
[9] Dembo, A.; Zeitouni, O., Large deviations techniques and applications, (1998), Springer-Verlag Berlin · Zbl 0896.60013
[10] Eynard, B., Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices, Nuclear phys. B, 506, 633-664, (1997) · Zbl 0925.82121
[11] Guionnet, A., Large deviation upper bounds and central limit theorems for band matrices, Ann. inst. H. Poincaré, (2001)
[12] Hiai, F.; Petz, D., Eigenvalue density of the Wishart matrix and large deviations, Infin. dimens. anal. quantum probab. relat. top., 1, 633-646, (1998) · Zbl 0934.60006
[13] James, A.T., Distribution of matrix variates and latent roots derived from normal samples, Ann. math. stat., 35, 475-501, (1964) · Zbl 0121.36605
[14] Kato, T., Perturbation theory for linear operators, (1976), Springer-Verlag Berlin
[15] Kipnis, C.; Olla, S.; Varadhan, S.R.S., Hydrodynamics and large deviation for simple exclusion processes, Comm. pure appl. math., 42, 115-137, (1989) · Zbl 0644.76001
[16] Matytsin, A., On the large N-limit of the itzykson – zuber integral, Nuclear phys. B, 411, 805-820, (1994) · Zbl 1049.81631
[17] Mehta, M.L., Random matrices, (1991), Academic Press San Diego · Zbl 0594.60067
[18] Mehta, M.L., A method of integration over matrix variables, Comm. math. phys., 79, 327-340, (1981) · Zbl 0471.28007
[19] Pastur, L.A.; Martchenko, V.A, The distribution of eigenvalues in certain sets of random matrices, Math. USSR-sbornik, 1, 457-483, (1967) · Zbl 0162.22501
[20] Ruelle, D., Statistical mechanics: rigorous results, (1969), Benjamin Amsterdam · Zbl 0177.57301
[21] Silverstein, J.W.; Bai, Z.D., On the empirical distribution of eigenvalues of a class of large dimensional random matrices, J. mult. anal, 54, 175-192, (1995) · Zbl 0833.60038
[22] Tricomi, F.G., Integral equations, (1957), Interscience New York · Zbl 0078.09404
[23] Voiculescu, D., Lectures on free probability theory, Lecture notes in math., 1738, 283-349, (2000) · Zbl 1015.46037
[24] Wigner, E., On the distribution of the roots of certain symmetric matrices, Ann. math., 67, 325-327, (1958) · Zbl 0085.13203
[25] Zinn-Justin, P., Universality of correlation functions of Hermitian random matrices in an external field, Comm. math. phys., 194, 631-650, (1998) · Zbl 0912.15028
[26] Zinn-Justin, P., The dilute Potts model on random surfaces, J. statist. phys., 98, 245-264, (2000) · Zbl 0957.82009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.