×

zbMATH — the first resource for mathematics

On positive solutions of boundary value problems on the half-line. (English) Zbl 1003.34024
The boundary value problem \[ x''(t)- k^2 x(t)+ f(t,x(t), x'(t))= 0,\quad x(0)= 0,\quad \lim_{t\to\infty} x(t)= 0, \] is studied. The author considers separately the case when \(f\) is independent of \(x'\). It is assumed that the function \(f\geq 0\) is continuous and \(k> 0\). Sufficient conditions are obtained for the existence of at least one positive solution in an appropriate functional space equipped with Bielecki’s norm. The proofs are based on the fixed-point theorem in cones of Krasnoselskij.

MSC:
34B40 Boundary value problems on infinite intervals for ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agarwal, R.P.; O’Regan, D.; Wong, P.J.Y., Positive solutions of differential, difference and integral equations, (1999), Kluwer Academic Dordrecht · Zbl 0923.39002
[2] Avery, R.I.; Henderson, J., Three symmetric positive solutions for a second-order boundary value problem, Appl. math. lett., 13, 1-7, (2000) · Zbl 0961.34014
[3] Banaś, J.; Goebel, K., Measures of noncompactness in Banach spaces, (1980), Dekker New York/Basel · Zbl 0441.47056
[4] Baxley, J.V., Existence and uniqueness for nonlinear boundary value problems on infinite intervals, J. math. anal. appl., 147, 122-133, (1990) · Zbl 0719.34037
[5] Bielecki, A., Une remarque sur la méthode de banach – cacciopoli – tichonov dans la théorie des équations différentielles ordinaires, Bull. acad. polon. sci., 4, 261-264, (1956) · Zbl 0070.08103
[6] T. Dłotko, On an approach to existence of solutions to nonlinear boundary value problems, preprint.
[7] Erbe, L.H.; Wang, H., On the existence of positive solutions of ordinary differential equations, Proc. amer. math. soc., 120, 743-748, (1994) · Zbl 0802.34018
[8] Granas, A.; Guenther, R.B.; Lee, J.W.; O’Regan, D., Boundary value problems on infinite intervals and semiconductor devices, J. math. anal. appl., 116, 335-348, (1986) · Zbl 0594.34019
[9] Guo, D.; Lakshmikantham, V., Multiple solutions of two-point boundary value problems of ordinary differential equations in Banach spaces, J. math. anal. appl., 129, 211-222, (1988) · Zbl 0645.34014
[10] Guo, D.; Lakshmikantham, V., Nonlinear problems in abstract cones, (1988), Academic Press New York · Zbl 0661.47045
[11] Henderson, J.; Wang, H., Positive solutions for nonlinear eigenvalue problems, J. math. anal. appl., 208, 252-259, (1997) · Zbl 0876.34023
[12] Lian, W.C.; Wong, F.H.; Yeh, C.C., On the existence of positive solutions of nonlinear second order differential equations, Proc. amer. math. soc., 124, 1117-1126, (1996) · Zbl 0857.34036
[13] Przeradzki, B., On a two point boundary value problem for differential equations on the half-line, Ann. polon. math., 50, 53-61, (1989) · Zbl 0682.34016
[14] I. Rachůnková, Multiple solutions of nonlinear boundary value problems and topological degree, inProceedings of EQUDIFF 9, Brno, 1997, pp. 147-158.
[15] Wong, F.H., An application of Schauder’s fixed point theorem with respect to higher order BVPs, Proc. amer. math. soc., 126, 2389-2397, (1998) · Zbl 0895.34016
[16] Zima, K., Sur l’existence des solutions d’une équation intégro-différentielle, Ann. polon. math., 27, 181-187, (1973) · Zbl 0257.45009
[17] Zima, M., On a certain boundary value problem, Comment. math. prace mat., 29, 331-340, (1990) · Zbl 0724.34029
[18] M. Zima, On positive solutions of functional-differential equations in Banach spaces, J. Inequal. Appl, in press. · Zbl 1001.34057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.