zbMATH — the first resource for mathematics

Real Fano varieties. (Variétés de Fano réelles.) (French) Zbl 1004.53059
Séminaire Bourbaki. Volume 1999/2000. Exposés 865-879. Paris: Société Mathématique de France, Astérisque 276, 189-206, Exp. No. 872 (2002).
A Fano varieties is a compact smooth Kähler manifold whose Kähler class coincides with the Chern class. The present paper gives a sketch of Viterbo’s theorem, related to Kollar’s conjecture. Floer trajectories, holomorphic curves and the Conley-Zehnder-Duisfermaat index are used. At the end the Eliashberg approach is given.
For the entire collection see [Zbl 0981.00011].

53D12 Lagrangian submanifolds; Maslov index
14P25 Topology of real algebraic varieties
Full Text: Numdam EuDML