Patterns of synchrony in neural networks with spike adaptation. (English) Zbl 1004.92011

Summary: We study the emergence of synchronized burst activity in networks of neurons with spike adaptation. We show that networks of tonically firing adapting excitatory neurons can evolve to a state where the neurons burst in a synchronized manner. The mechanism leading to this burst activity is analyzed in a network of integrate-and-fire neurons with spike adaptation. The dependence of this state on the different network parameters is investigated, and it is shown that this mechanism is robust against inhomogeneities, sparseness of the connectivity, and noise.
In networks of two populations, one excitatory and one inhibitory, we show that decreasing the inhibitory feedback can cause the network to switch from a tonically active, asynchronous state to the synchronized bursting state. Finally, we show that the same mechanism also causes synchronized burst activity in networks of more realistic conductance-based model neurons.


92C20 Neural biology
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI Link


[1] Abbott L. F., Phys. Rev. 48 pp 1483– (1993)
[2] DOI: 10.1093/cercor/8.5.462
[3] Butera R. J. Jr., J. Neurophysiol. 82 pp 398– (1999)
[4] DOI: 10.1098/rspb.1981.0039
[5] DOI: 10.1016/S0167-2789(98)00082-7 · Zbl 1194.35469
[6] DOI: 10.1016/0166-2236(90)90185-D
[7] Connors B. W., J. Neurophysiol. 48 pp 1302– (1982)
[8] DOI: 10.1162/089976698300017511
[9] DeBusk B., J. Neurophysiol. 78 pp 199– (1997)
[10] DOI: 10.1162/neco.1994.6.4.679
[11] Flint A. C., J. Neurophysiol. 75 pp 951– (1996)
[12] DOI: 10.1162/neco.1996.8.8.1653 · Zbl 05475245
[13] DOI: 10.1103/PhysRevE.50.3171
[14] Golomb D., J. Neurophysiol. 78 pp 1199– (1997)
[15] DOI: 10.1162/089976600300015529
[16] DOI: 10.1103/PhysRevE.48.4810
[17] DOI: 10.1007/BF00962716
[18] Gutnick M. J., J. Neurophysiol. 48 pp 1321– (1982)
[19] Hansel D., Concepts in Neuroscience 4 pp 192– (1993)
[20] DOI: 10.1162/neco.1995.7.2.307
[21] DOI: 10.1162/089976698300017845
[22] DOI: 10.1103/PhysRevLett.68.718
[23] DOI: 10.1113/jphysiol.1959.sp006238
[24] Latham P. E., J. Neurophysiol. 83 pp 808– (2000)
[25] DOI: 10.1088/0954-898X/10/1/004 · Zbl 0916.92003
[26] DOI: 10.1162/089976600300015286
[27] DOI: 10.1111/j.1749-6632.1998.tb09044.x
[28] DOI: 10.1007/BF00962717
[29] DOI: 10.1126/science.1824881
[30] Snider R., J. Neurophysiol. 80 pp 730– (1998)
[31] DOI: 10.1126/science.8235588
[32] DOI: 10.1113/jphysiol.1992.sp019184
[33] DOI: 10.1103/PhysRevE.54.5522
[34] DOI: 10.1103/PhysRevLett.84.5110
[35] DOI: 10.1007/BF00961879
[36] DOI: 10.1023/A:1008841325921 · Zbl 0896.92010
[37] DOI: 10.1038/373612a0
[38] DOI: 10.1016/S0006-3495(72)86068-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.