Synchronization of a unified chaotic system and the application in secure communication. (English) Zbl 1005.37012

Summary: This Letter further investigates the synchronization of a unified chaotic system via different methods. Several sufficient theorems for the synchronization of the unified chaotic system are deduced. A scheme of secure communication based on the synchronization of the unified chaotic system is presented. Numerical simulation shows its feasibility.


37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
37N99 Applications of dynamical systems
Full Text: DOI


[1] Pecora, L.M.; Carroll, T.L., Phys. rev. lett., 64, 8, 812, (1990)
[2] Pecora, L.M.; Carroll, T.L., Phys. rev. A, 44, 2374, (1991)
[3] Badola, P.; Tambe, S.S.; Kulkarni, B.D., Phys. rev. A, 46, 6735, (1992)
[4] Chen, G.; Dong, X., From chaos to order: perspectives, methodologies and applications, (1998), World Scientific Singapore
[5] Lü, J.; Lu, J.; Chen, S., Chaotic time series analysis and its application, (2002), Wuhan Univ. Press China
[6] Chen, S.; Lu, J., The introduction to chaotic dynamics, (1998), Wuhan Univ. Press China
[7] Tao, C.; Lu, J.; Lü, J., Acta phys. sinica, 51, 7, 1497, (2002)
[8] Lü, J.; Zhang, S., Phys. lett. A, 286, 148, (2001)
[9] Chen, S.; Lü, J., Phys. lett. A, 353, (2002)
[10] Lü, J.; Chen, G.; Zhang, S.; Celikovsky, S., Int. J. bifur. chaos, 12, 12, (2002), in press
[11] Lorenz, E.N., J. atmos. sci., 20, 130, (1963)
[12] Chen, G.; Ueta, T., Int. J. bifur. chaos, 9, 1465, (1999)
[13] Vanĕc̆ek, A.; C̆elikovský, S., Control systems: from linear analysis to synthesis of chaos, (1996), Prentice Hall London · Zbl 0874.93006
[14] Lü, J.; Chen, G., Int. J. bifur. chaos, 12, 3, 659, (2002)
[15] Lu, J.; Tao, C.; Lü, J.; Liu, M., Chin. phys. lett., 19, 5, 632, (2002)
[16] Lai, J.; Zhou, S.; Li, G.; Xu, D., Acta phys. sinica, 50, 1, 21, (2001)
[17] Chen, S.; Liu, J.; Xie, J.; Lu, J., Chin. phys., 11, 3, 233, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.