zbMATH — the first resource for mathematics

Almost fixed points of multimaps having totally bounded ranges. (English) Zbl 1005.47054
The main thrust of this paper centres around a fixed point theorem of A. Idzik [Proc. Am. Math. Soc. 104, No. 3, 779-784 (1988; Zbl 0691.47046)] for a Kakutani map. In the author’s words: “We give almost fixed point theorems for Kakutani maps or for a larger class of multimaps (so called, the better admissible class) having totally bounded ranges. Precisely, we assume that the closures of the ranges satisfy more restrictive conditions than that of convexly totally bounded sets. Our results are applied to obtain the most well-known fixed point theorems in analytical fixed point theory. Actually, our results include the historically well-known theorems due to Brouwer, Schauder, Tychonoff, Kakutani, Hukuhara, Bohnenblust and Karlin, Fan, Glicksberg, Fort, Himmelberg, Granas and Liu, Lassonde, Smart, Chang and Yen, and others”.

47H10 Fixed-point theorems
47H04 Set-valued operators
54C60 Set-valued maps in general topology
54H25 Fixed-point and coincidence theorems (topological aspects)
Full Text: DOI
[1] Chang, T.-H.; Yen, C.-L., KKM property and fixed point theorems, J. math. anal. appl., 203, 224-234, (1996) · Zbl 0883.47067
[2] De Pascale, E.; Trombetta, G.; Weber, H., Convexly totally bounded and strongly totally bounded sets, solution of a problem of idzik, Ann. del. scuola normale superiore di Pisa, sci. fis. mat. ser. IV., XX, 341-355, (1993) · Zbl 0805.47055
[3] Fort, M.K., Open topological disk in the plane, J. Indian math. soc., 18, 24-26, (1954) · Zbl 0056.16102
[4] O. Hadžić, Fixed Point Theory in Topological Vector Spaces, University of Novi Sad, Novi Sad, 1984, 337pp.
[5] Himmelberg, C.J., Fixed points of compact multifunctions, J. math. anal. appl., 38, 205-207, (1972) · Zbl 0204.23104
[6] Hukuhara, M., Sur l’existence des points invariants d’une transformation dans l’espace fonctionnel, Japan J. math., 20, 1-4, (1950) · Zbl 0041.23801
[7] Idzik, A., Almost fixed point theorems, Proc. amer. math. soc., 104, 779-784, (1988) · Zbl 0691.47046
[8] A. Idzik, S. Park, Leray-Schauder type theorems and equilibrium existence theorems, in: Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis, Vol. 2, Nicholas Copernicus, Univ. Torin, Poland, 1998, pp. 191-197. · Zbl 1099.47514
[9] Knaster, B.; Kuratowski, K.; Mazurkiewicz, S., Ein beweis des fixpunktsatzes für n-dimensionale simplexe, Fund. math., 14, 132-137, (1929) · JFM 55.0972.01
[10] Lassonde, M., Fixed points for Kakutani factorizable multifunctions, J. math. anal. appl., 152, 46-60, (1990) · Zbl 0719.47043
[11] Park, S., Some coincidence theorems on acyclic multifunctions and applications to KKM theory, (), 248-277
[12] Park, S., Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean math. soc., 31, 493-519, (1994) · Zbl 0829.49002
[13] S. Park, Eighty years of the Brouwer fixed point theorem in: J. Jaworowski, W.A. Kirk, S. Park (Eds.), Antipodal Points and Fixed Points, Lecture Notes Series, Vol. 28, RIM-GARC, Seoul National University, 1995, pp. 55-97.
[14] Park, S., Coincidence theorems for the better admissible multifunctions and their applications, Nonlinear anal., 30, 4183-4191, (1997) · Zbl 0922.47052
[15] Park, S., Fixed points of the better admissible multimaps, Math. sci. res. hot-line, 1, 9, 1-6, (1997) · Zbl 0915.47042
[16] S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 35 (1998) 803-829. Corrections, J. Korean Math. Soc. 36 (1999) 829-832. · Zbl 0923.47034
[17] Park, S., Ninety years of the Brouwer fixed point theorem, Vietnam J. math., 27, 193-232, (1999)
[18] Park, S., Remarks on a fixed point problem of ben-el-mechaiekh, (), 79-86 · Zbl 0997.47046
[19] Park, S., Elements of the KKM theory for generalized convex spaces, Korean J. comp. appl. math., 7, 1-28, (2000) · Zbl 0959.47035
[20] S. Park, Wanbok Lee, A unified approach to generalized KKM maps in generalized convex spaces, J. Nonlinear and Convex Anal. 2 (2001), to appear. · Zbl 0996.47051
[21] Park, S.; Singh, S.P.; Watson, B., Some fixed point theorems for composites of acyclic maps, Proc. amer. math. soc., 121, 1151-1158, (1994) · Zbl 0806.47053
[22] Rassias, T.M., On fixed point theory in non-linear analysis, Tamkang J. math., 8, 233-237, (1977) · Zbl 0394.47030
[23] Smart, D.R., Almost fixed points, Exposition math., 11, 81-90, (1993) · Zbl 0813.54029
[24] H. Weber, Compact convex sets in non-locally convex linear spaces, Schauder-Tychonoff fixed point theorem, in: Topology, Measure, and Fractals, Warnemünde, 1991, Mathematical Research, Vol. 66, Akademie-Verlag, Berlin, 1992, pp. 37-40.
[25] Weber, H., Compact convex sets in non-locally-convex linear spaces, Note mat., 12, 271-289, (1992) · Zbl 0846.46004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.