×

New results concerning exponential stability and periodic solutions of delayed cellular neural networks. (English) Zbl 1006.68107

Summary: Employing Young inequality firstly and general Lyapunov functional, the author studies further global exponential stability and the existence of periodic solutions of cellular neural networks with delays in this Letter. A family of simple sufficient conditions is given for checking global exponential stability and the existence of periodic solutions of cellular neural networks with delays. The results extend and improve the earlier publications.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chua, L.O.; Yang, L., IEEE trans. circuits systems, 35, 10, 1257, (1988)
[2] Chua, L.O.; Yang, L., IEEE trans. circuits systems, 35, 10, 1273, (1988)
[3] Roska, T.; Chua, L.O., Int. J. circuit theory appl., 20, 469, (1992)
[4] Roska, T.; Wu, C.W.; Chua, L.O., IEEE trans. circuits systems part I, 40, 4, 270, (1993)
[5] Roska, T.; Wu, C.W.; Balsi, M.; Chua, L.O., IEEE trans. circuits systems part I, 39, 6, 487, (1992)
[6] Gilli, M., IEEE trans. circuits systems part I, 41, 518, (1994)
[7] Cao, J.; Zhou, D., Neural networks, 11, 9, 1601, (1998)
[8] Arik, S.; Tavsanoglu, V., IEEE trans. circuits systems part I, 45, 2, 168, (1998)
[9] Cao, J., Phys. rev. E, 59, 5, 5940, (1999)
[10] Mastsuoka, K., Neural networks, 5, 495, (1992)
[11] Civalleri, P.P.; Gilli, M., IEEE trans. circuits systems, 40, 3, 157, (1993)
[12] Liao, X.X., Sci. China ser. A, 24, 10, 1037, (1994), (in Chinese)
[13] Cao, J.-D., Int. J. systems sci., 31, 10, 1313, (2000)
[14] Cao, J., Stability in cellular neural networks with delays, (), 71-74
[15] Cao, J., Phys. rev. E, 60, 3, 3244, (1999)
[16] Cao, J., J. comput. systems sci., 60, 1, 38, (2000)
[17] Cao, J., Int. J. systems sci., 32, 2, 233, (2001)
[18] Cao, J., Phys. lett. A, 261, 5-6, 303, (1999)
[19] J. Cao, Global stability in delayed cellular neural networks, in: Neural Networks for Signal Processing IX, Proceedings of the 1999 IEEE Workshop, Madison, WI, USA, August 1999, pp. 95-102
[20] Cao, J., On stability of neural networks with transmission delays, (), 665-669
[21] Cao, J.; Wang, L., IEEE trans. neural networks, 13, 2, 457, (2002)
[22] Cao, J., Phys. lett. A, 267, 6-7, 312, (2000)
[23] Cao, J., Phys. lett. A, 270, 3-4, 157, (2000)
[24] Cao, J.; Li, Q., J. math. anal. appl., 252, 1, 50, (2000)
[25] Arik, S.; Tavsanoglu, V., IEEE trans. circuits systems part I, 47, 4, 571, (2000)
[26] Cao, J., IEEE trans. circuits systems part I, 48, 4, 494, (2001)
[27] Fang, Y.; Kincaid, T.K., IEEE trans. neural networks, 7, 996, (1995)
[28] Michel, A.N.; Farrel, J.A.; Poprod, W., IEEE trans. circuits systems, 36, 229, (1989)
[29] Lu, H., Neural networks, 13, 1135, (2000)
[30] Gopalsamy, K.; He, X.Z., IEEE trans. neural networks, 5, 6, 998, (1994)
[31] Kosko, B., Appl. opt., 26, 23, 4947, (1987)
[32] Joy, M., Neural networks, 13, 613, (2000)
[33] Liang, X.; Wu, L., IEEE trans. circuits systems, 45, 5, 584, (1998)
[34] Cao, J., IEEE trans. circuits systems part I, 48, 11, 1330, (2001)
[35] Cao, J.; Tao, Q., J. comput. systems sci., 62, 3, 528, (2001)
[36] Cao, J.; Tao, Q., J. comput. systems sci., 60, 1, 179, (2000)
[37] Driessche, P.V.D.; Zou, X., SIAM J. appl. math., 58, 6, 1878, (1998)
[38] Huang, H.; Cao, J.; Wang, J., Phys. lett. A, 298, 393, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.