×

zbMATH — the first resource for mathematics

COBRA: An optimized code for fast analysis of ideal ballooning stability of three-dimensional magnetic equilibria. (English) Zbl 1006.82500
Summary: A new, fast, and accurate numerical algorithm to assess stability against ideal ballooning modes in general three-dimensional magnetic configurations of interest to controlled thermonuclear fusion is described. The code for ballooning rapid analysis (COBRA) performs this assessment by solving an eigenvalue problem in the form of a linear second-order ordinary differential equation along magnetic field lines in the configuration. An initial approximation for the eigenvalue is obtained from a fast second order matrix method. In COBRA, this approximate eigenvalue is further refined using a variational principle to obtain fourth-order convergence with the mesh size. Richardson’s extrapolation is then applied to a sequence of eigenvalues to estimate the exact eigenvalue using the coarsest possible mesh, thus minimizing the computational time.

MSC:
82-08 Computational methods (statistical mechanics) (MSC2010)
82D75 Nuclear reactor theory; neutron transport
76W05 Magnetohydrodynamics and electrohydrodynamics
76M99 Basic methods in fluid mechanics
Software:
COBRA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hirshman, S.P., Phys. plasmas, 6, 1858, (1999)
[2] D. A. Spong, et al., Fusion energy 1998, in, Proc. 17th IAEA Conf, Yokohama, Japan, 1998.
[3] A. Reiman, et al., Fusion energy 1998, in, Proc. 17th IAEA Conf, Yokohama, Japan, 1998.
[4] Cary, J.R.; Shasharina, S.G., Phys. rev. lett., 78, 674, (1997)
[5] Hirshman, S.P.; Van Rij, W.I.; Merkel, P., Comput. phys. comm., 43, 143, (1986)
[6] Hirshman, S.P.; Spong, D.A.; Whitson, J.C.; Lynch, V.E.; Batchelor, D.B.; Carreras, B.A.; Rome, J.A., Phys. rev. lett., 80, 528, (1998)
[7] Spong, D.A.; Hirshman, S.P.; Whitson, J.C.; Batchelor, D.B.; Carreras, B.A.; Lynch, V.E.; Rome, J.A., Phys. plasmas, 5, 1752, (1998)
[8] Dobrott, D., Phys. rev. lett., 39, 943, (1977)
[9] Anderson, D.V.; Cooper, W.A.; Gruber, R.; Merazzi, S.; Schwenn, U., J. super comput. appl., 4, 34, (1990)
[10] Sanchez, R.; Jimenez, J.A.; Garcia, L.; Varias, A., Nucl. fusion, 37, 3557, (1997)
[11] Connor, J.W.; Hastie, R.J.; Taylor, J.B., Proc. R. soc. London A, 1, 365, (1979)
[12] Correa-restrepo, D., Z. naturforsch. A, 37, 848, (1982)
[13] Dewar, R.L.; Glasser, A.H., Phys. fluids, 26, 3038, (1983)
[14] Dahlquist, G.; Björck, A., Numerical methods, (1974)
[15] Press, W.; Teukolsky, S.; Vettering, W.; Flannery, B., Numerical recipes, (1992)
[16] Boozer, A.H., Phys. fluids, 23, 904, (1980)
[17] Morse, P.; Fesbach, H., Methods of theoretical physics, I, (1953)
[18] Courant, R.; Hilbert, D., Methods of mathematical physics, I, (1953) · Zbl 0729.00007
[19] Sagan, H., Introduction to the calculus of variations, (1969)
[20] Rektorys, K., Survey of applicable mathematics, (1969) · Zbl 0175.15802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.