×

zbMATH — the first resource for mathematics

Global stability of discrete population models with time delays and fluctuating environment. (English) Zbl 1006.92025
Summary: The global stability of a discrete population model of Volterra type is studied. The model incorporates time delays and allows for a fluctuating environment. By linearization of the model at positive solutions and construction of Lyapunov functionals, sufficient conditions are obtained to ensure a positive solution of the model is stable and attracts all positive solutions.

MSC:
92D25 Population dynamics (general)
39A11 Stability of difference equations (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wendi, W.; Zhengyi, L., Global stability of discrete models of lotka – volterra type, Nonlinear anal., 35, 1019-1030, (1999) · Zbl 0919.92030
[2] Cull, P., Global stability of population models, Bull. math. biol., 43, 47-58, (1981) · Zbl 0451.92011
[3] Cull, P., Stability of discrete one-dimensional population models, Bull. math. biol., 50, 67-75, (1988) · Zbl 0637.92011
[4] Franke, J.E.; Yakubu, A.A., Geometry of exclusion principles in discrete systems, J. math. anal. appl., 168, 385-400, (1992) · Zbl 0778.93012
[5] Franke, J.E.; Yakubu, A.A., Mutual exclusion versus coexistence for discrete competitive systems, J. math. biol., 30, 161-168, (1991) · Zbl 0735.92023
[6] Franke, J.E.; Yakubu, A.A., Species extinction using geometry of level surfaces, Nonlinear anal., 21, 369-378, (1993) · Zbl 0788.34043
[7] Lakshimikantham, V.; Trigiante, D., Theory of difference equations: numerical methods and applications, (1988), Academic Press New York
[8] Huang, Y.N., A note on global stability for discrete one-dimensional population models, Math. biosci., 102, 121-124, (1990) · Zbl 0707.92018
[9] Kocic, V.K.; Ladas, G., Global behavior of nonlinear difference equations of higher order with applications, (1993), Kluwer Academic Dordrecht · Zbl 0787.39001
[10] Karakostas, G.; Philos, C.G.; Sficas, Y.G., The dynamics of some discrete population models, Nonlinear anal., 17, 1069-1084, (1991) · Zbl 0760.92019
[11] Kuruklis, S.A.; Ladas, G., Oscillations and global attractivity in a discrete delay logistic model, Quart. appl. math., 10, 227-233, (1992) · Zbl 0799.39004
[12] Liu, P.; Gopalsamy, K., Dynamics of a hyperbolic logistic map with fading memory, Dynam. continuous discrete impulsive systems, 1, 53-67, (1995) · Zbl 0869.39003
[13] Hofbauer, J.; Hutson, V.; Jansen, W., Coexistence for systems governed by difference equations of lotka – volterra type, J. math. biol., 25, 553-570, (1987) · Zbl 0638.92019
[14] Wendi, W.; Zhien, M., Asymptotic behavior of a predator-prey system with diffusion and delays, J. math. anal. appl., 206, 191-204, (1997) · Zbl 0872.92019
[15] Wendi, W.; Fergola, P.; Tenneriello, C., Global attractivity of periodic solutions of population models, J. math. biol., 211, 498-511, (1997) · Zbl 0879.92027
[16] Wendi, W.; Lansun, C.; Zhengyi, L., Global stability of a competition model with periodic coefficients and time delays, Canad. appl. math. quart., 3, 365-378, (1995) · Zbl 0845.92020
[17] Kuang, Y., Global stability in delay differential systems without dominating instantaneous negative feedbacks, J. differential equations, 119, 503-532, (1995) · Zbl 0828.34066
[18] Kuang, Y.; Smith, H.L., Global stability for infinite delay lotka – volterra type systems, J. differential equations, 103, 211-246, (1993) · Zbl 0786.34077
[19] Kuang, Y., Delay differential equations with applications in population dynamics, (1993), Academic Press Boston · Zbl 0777.34002
[20] Beretta, E.; Solimano, F., A generalization of Volterra models with continuous time delay in population dynamics: boundedness and global asymptotic stability, SIAM J. appl. math., 48, 607-626, (1988) · Zbl 0659.92020
[21] Beretta, E.; Takeuchi, Y., Global asymptotic stability of lotka – volterra diffusion models with continuous delay, SIAM J. appl. math., 48, 627-651, (1988) · Zbl 0661.92018
[22] Tineo, A., On the asymptotic behavior of some population models, J. math. anal. appl., 167, 516-529, (1992) · Zbl 0778.92018
[23] Gopalsamy, K., Global asymptotic stability in a periodic lotka – volterra system, J. austral. math. soc. ser. B, 27, 66-72, (1985) · Zbl 0588.92019
[24] Crone, E.E., Delayed density dependence and the stability of interacting populations and subpopulations, Theoret. population biol., 51, 67-76, (1997) · Zbl 0882.92025
[25] Turchin, P.; Taylor, A.D., Complex dynamics in ecological time series, Ecology, 73, 289-305, (1992)
[26] Turchin, P., Chaos and stability in rodent population dynamics: evidence from nonlinear time series analysis, Oikos, 68, 167-182, (1993)
[27] Hale, J.K., Theory of functional differential equations, (1977), Springer-Verlag Berlin · Zbl 0425.34048
[28] Ruan, S.; He, X.Z., Global stability in chemostat-type competition models with nutrient recycling, SIAM J. appl. math., 58, 170-192, (1998) · Zbl 0912.34062
[29] He, X.Z.; Ruan, S.; Xia, H., Global stability in chemostat-type equations with distributed delays, SIAM J. math. anal., 29, 681-696, (1998) · Zbl 0916.34064
[30] Salemi, F.; Salone, V.; Wendi, W., Stability of a competition model with two-stage structure, Appl. math. comput., 99, 221-231, (1999) · Zbl 0931.92029
[31] Zhengyi, L.; Takeuchi, Y., Permanence and global stability for cooperative lotka – volterra diffusion systems, Nonlinear anal., 19, 963-975, (1992) · Zbl 0784.93092
[32] Zhengyi, L.; Takeuchi, Y., Permanence and global attractivity for competitive lotka – volterra diffusion systems, Nonlinear anal., 22, 847-856, (1994) · Zbl 0809.92025
[33] Alvarez, C.; Lazer, A., An application of topological degree to the periodic competing species problems, J. austral. math. soc. ser. B, 28, 202-219, (1986) · Zbl 0625.92018
[34] Kocic, V.L.K.; Ladas, G., Global attractivity in nonlinear delay difference equations, Proc. amer. math. soc., 115, 1083-1088, (1992) · Zbl 0756.39005
[35] So, J.W.H.; Yu, J.S., On the stability and uniform persistence of a discrete model of Nicholson’s blowflies, J. math. anal. appl., 193, 233-244, (1995) · Zbl 0834.39009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.