×

Regularity criterion in terms of pressure for the Navier-Stokes equations. (English) Zbl 1007.35064

For the initial value problem for incompressible Navier-Stokes equations, the authors derive regularity criterion in terms of pressure norm in suitable functional spaces with appropriate restriction on the space parameters. The criterion is applied to the proof of regularity of weak Leray-Hopf solutions.

MSC:

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Beirão da Veiga, H., A new regularity class for the navier – stokes equations in \(R\^{}\{n\}\), Chinese ann. math, 16, 407-412, (1995) · Zbl 0837.35111
[2] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the navier – stokes equations, Comm. pure appl. math, 35, 771-831, (1982) · Zbl 0509.35067
[3] Chae, D.; Choe, H-J., On the regularity criterion for the solutions of the navier – stokes equations, Electron. J. differential equations, 1999, 05, 1-7, (1999)
[4] Duff, G.F.D., Derivative estimates for the navier – stokes equations in a three dimensional region, Acta math, 164, 145-210, (1990) · Zbl 0728.35083
[5] E. Fabes, B. Jones, Riviere, The initial value problem for the Navier-Stokes equations with data in Lp, Arch. Rational Mech. Anal. 45 1972 222-248. · Zbl 0254.35097
[6] Giga, Y., Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the navier – stokes system, J. differential equations, 62, 186-212, (1986) · Zbl 0577.35058
[7] Hopf, E., Über die anfangwertaufgaben für die hydromischen grundgleichungen, Math. nach, 4, 213-321, (1951)
[8] Kato, T., Strong Lp-solutions of the navier – stokes equation in \(R\^{}\{m\}\), with applications to weak solutions, Math. Z, 187, 471-480, (1984) · Zbl 0545.35073
[9] Kaniel, S., A sufficient condition for smoothness of solutions of navier – stokes equations, Israel J. math, 6, 354-358, (1968) · Zbl 0174.15003
[10] Kozono, H.; Sohr, H., Regularity criterion on weak solutions to the navier – stokes equations, Adv. differential equations, 2, 535-554, (1997) · Zbl 1023.35523
[11] Leray, J., Étude de divers équations intégrales nonlinearies et de quelques problemes que posent lhydrodinamique, J. math. pures. appl, 12, 1-82, (1931)
[12] Lin, F.H., A new proof of caffarelli – kohn – nirenberg’s theorem, Comm. pure appl. math, 51, 3, 241-257, (1998) · Zbl 0958.35102
[13] Ohyama, T., Interior regularity of weak solutions to the navier – stokes equation, Proc. Japan acad, 36, 273-277, (1960) · Zbl 0100.22404
[14] Serrin, J., On the interior regularity of weak solutions of the navier – stokes equations, Arch. rational mech. anal, 9, 187-191, (1962) · Zbl 0106.18302
[15] Struwe, M., On partial regularity results for the navier – stokes equations, Comm. pure appl. math, 41, 437-458, (1988) · Zbl 0632.76034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.