×

zbMATH — the first resource for mathematics

Generalized group characters and complex oriented cohomology theories. (English) Zbl 1007.55004
This is a paper of long gestation and wide scope. It examines the functor \(G\mapsto E^*(BG)\) which takes a finite group \(G\) into the \(E\)-cohomology of its classifying space where \(E^*(-)\) is a complex oriented cohomology theory. Complex oriented cohomology theories include ordinary integral cohomology, complex K-theory, complex cobordism, the variety of theories related to Brown-Peterson cohomology, and the Morava K-theories, \(K(n)^*(-)\).
For a finite group \(G\), \({\mathcal A}(G)\) is the category whose objects are the Abelian subgroups of \(G\). A morphism from \(B\) to \(A\) is a \(G\)-map from \(G/B\) to \(G/A\). With \(G\) a finite group of order \(|G|\) and \(E\) as above, \[ {1\over|G|} E^*(BG)\to \lim_{A\in{\mathcal A}(G)} {1\over|G|} E^*(BA) \] is an isomorphism. This result is an analogue of Artin’s theorem; the splitting principle is employed in the proof.
A second result states that for a finite group \(G\), the Morava K-theory Euler characteristic \(\dim K(n)^{\text{even}}(BG)- \dim K(n)^{\text{odd}}(BG)\) is the number of \(G\)-orbits in a \(G\)-set \(G_{n,p}\). The prime \(p\) is the one associated to the Morava K-theory. \(G_{n,p}\) is the set of \(n\)-tuples of commuting order-\(p\) elements of \(G\). \(G\) acts on \(G_{n,p}\) by conjugation.
If we take as our example of complex-oriented \(E^*\) ordinary cohomology, \({1\over|G|} E^*(BG)\) is not very interesting. But decades ago, Landweber observed that \(MU^*(BZ/2)\) is torsion-free – vastly different to its homology analogue. If \(E^*\) is a \(p\)-complete integral life of \(K(n)^*\), then \(E^*(BG)\) will be torsion-free if and only if \(K(n)^*(BG)\) is concentrated in even degrees. This leads the authors to seek conditions to ensure this even concentration (e.g. if the group \(G\) is “good”).
The authors interpret their results in terms of generalized characters and invariant rings. The reader is referred to the paper’s introduction for the necessary definitions and precise statements. The authors’ approach can be applied to compute the kernel of \(\pi^0_s(BG)\to MU^0(BG)\) up to finite index.

MSC:
55N22 Bordism and cobordism theories and formal group laws in algebraic topology
55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology
55N91 Equivariant homology and cohomology in algebraic topology
55N34 Elliptic cohomology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, Chicago, Ill.-London, 1974. Chicago Lectures in Mathematics. · Zbl 0309.55016
[2] John Frank Adams, Infinite loop spaces, Annals of Mathematics Studies, vol. 90, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.
[3] J. F. Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 483 – 532. · doi:10.1007/BFb0075584 · doi.org
[4] Shôrô Araki, Equivariant stable homotopy theory and idempotents of Burnside rings, Publ. Res. Inst. Math. Sci. 18 (1982), no. 3, 1193 – 1212. · Zbl 0527.55020 · doi:10.2977/prims/1195183305 · doi.org
[5] M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23 – 64.
[6] M. F. Atiyah, \?-theory, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New York-Amsterdam, 1967.
[7] Michael Atiyah and Graeme Segal, On equivariant Euler characteristics, J. Geom. Phys. 6 (1989), no. 4, 671 – 677. · Zbl 0708.19004 · doi:10.1016/0393-0440(89)90032-6 · doi.org
[8] Andrew Baker and Urs Würgler, Liftings of formal groups and the Artinian completion of \?_\?\(^{-}\)\textonesuperior \?\?, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 3, 511 – 530. · Zbl 0729.55002 · doi:10.1017/S0305004100068249 · doi.org
[9] Andrew Baker, Hecke algebras acting on elliptic cohomology, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997) Contemp. Math., vol. 220, Amer. Math. Soc., Providence, RI, 1998, pp. 17 – 26. · Zbl 0911.55002 · doi:10.1090/conm/220/03091 · doi.org
[10] Raoul Bott and Clifford Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1989), no. 1, 137 – 186. · Zbl 0667.57009
[11] Tammo tom Dieck, Kobordismentheorie klassifizierender Räume und Transformationsgruppen, Math. Z. 126 (1972), 31 – 39 (German). · Zbl 0227.57017 · doi:10.1007/BF01580352 · doi.org
[12] Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. · Zbl 0445.57023
[13] Tammo tom Dieck, Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. · Zbl 0611.57002
[14] Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. · Zbl 0454.14020
[15] Michael J. Hopkins, Characters and elliptic cohomology, Advances in homotopy theory (Cortona, 1988) London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge, 1989, pp. 87 – 104. · Zbl 0729.55003
[16] Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Morava \?-theories of classifying spaces and generalized characters for finite groups, Algebraic topology (San Feliu de Guíxols, 1990) Lecture Notes in Math., vol. 1509, Springer, Berlin, 1992, pp. 186 – 209. · Zbl 0757.55006 · doi:10.1007/BFb0087510 · doi.org
[17] John Hunton, The Morava \?-theories of wreath products, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 309 – 318. · Zbl 0705.55009 · doi:10.1017/S0305004100068572 · doi.org
[18] N. M. Osadčiĭ, The algebras \?²_\?(\Gamma ), and the lattice of closed ideals of these algebras, Ukrain. Mat. Ž. 26 (1974), 669 – 670, 717 (Russian).
[19] Igor Kriz, Morava \?-theory of classifying spaces: some calculations, Topology 36 (1997), no. 6, 1247 – 1273. · Zbl 0896.55005 · doi:10.1016/S0040-9383(96)00049-3 · doi.org
[20] I. Kriz and K. P. Lee. Odd degree elements in the Morava \(K(n)\) cohomology of finite groups. Preprint, 1998. To appear in Topology and its applications. · Zbl 0963.55004
[21] Nicholas J. Kuhn, The Morava \?-theories of some classifying spaces, Trans. Amer. Math. Soc. 304 (1987), no. 1, 193 – 205. · Zbl 0637.55002
[22] Nicholas J. Kuhn, Character rings in algebraic topology, Advances in homotopy theory (Cortona, 1988) London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge, 1989, pp. 111 – 126. · Zbl 0693.55014
[23] Erkki Laitinen, On the Burnside ring and stable cohomotopy of a finite group, Math. Scand. 44 (1979), no. 1, 37 – 72. · Zbl 0389.16021 · doi:10.7146/math.scand.a-11795 · doi.org
[24] Peter S. Landweber, Complex bordism of classifying spaces, Proc. Amer. Math. Soc. 27 (1971), 175 – 179. · Zbl 0207.53601
[25] Peter S. Landweber, Douglas C. Ravenel, and Robert E. Stong, Periodic cohomology theories defined by elliptic curves, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 317 – 337. · Zbl 0920.55005 · doi:10.1090/conm/181/02040 · doi.org
[26] Serge Lang, Cyclotomic fields, Springer-Verlag, New York-Heidelberg, 1978. Graduate Texts in Mathematics, Vol. 59. · Zbl 0395.12005
[27] L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. · Zbl 0611.55001
[28] Jonathan Lubin and John Tate, Formal complex multiplication in local fields, Ann. of Math. (2) 81 (1965), 380 – 387. · Zbl 0128.26501 · doi:10.2307/1970622 · doi.org
[29] Jack Morava, Completions of complex cobordism, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 349 – 361. · Zbl 0394.55007
[30] P. S. Landweber , Elliptic curves and modular forms in algebraic topology, Lecture Notes in Mathematics, vol. 1326, Springer-Verlag, Berlin, 1988. · Zbl 0642.00007
[31] Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549 – 572; ibid. (2) 94 (1971), 573 – 602. · Zbl 0247.57013 · doi:10.2307/1970770 · doi.org
[32] Douglas C. Ravenel, Morava \?-theories and finite groups, Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R.I., 1982, pp. 289 – 292. · Zbl 0508.55009
[33] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. · Zbl 0608.55001
[34] Douglas C. Ravenel and W. Stephen Wilson, The Morava \?-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), no. 4, 691 – 748. · Zbl 0466.55007 · doi:10.2307/2374093 · doi.org
[35] Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105 – 112. · Zbl 0199.26404
[36] Graeme Segal, Equivariant \?-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129 – 151. · Zbl 0199.26202
[37] G. B. Segal, Equivariant stable homotopy theory, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 59 – 63. · Zbl 0225.55014
[38] Jean-Pierre Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967 (French). · Zbl 0205.04001
[39] C. T. Stretch, Stable cohomotopy and cobordism of abelian groups, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 273 – 278. · Zbl 0493.55002 · doi:10.1017/S0305004100058734 · doi.org
[40] N. P. Strickland, Morava \?-theory of symmetric groups, Topology 37 (1998), no. 4, 757 – 779. , https://doi.org/10.1016/S0040-9383(97)00054-2 N. P. Strickland, Correction to: ”Morava \?-theory of symmetric groups” [Topology 37 (1998), no. 4, 759 – 779; MR1607736 (99e:55008)], Topology 38 (1999), no. 4, 931. · Zbl 0912.55012 · doi:10.1016/S0040-9383(98)00043-3 · doi.org
[41] Michimasa Tanabe, On Morava \?-theories of Chevalley groups, Amer. J. Math. 117 (1995), no. 1, 263 – 278. · Zbl 0820.55002 · doi:10.2307/2375045 · doi.org
[42] Clifford Henry Taubes, \?\textonesuperior actions and elliptic genera, Comm. Math. Phys. 122 (1989), no. 3, 455 – 526. · Zbl 0683.58043
[43] M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 396 – 408. · Zbl 0673.55005 · doi:10.1007/BFb0085243 · doi.org
[44] Urs Würgler, Commutative ring-spectra of characteristic 2, Comment. Math. Helv. 61 (1986), no. 1, 33 – 45. · Zbl 0622.55003 · doi:10.1007/BF02621900 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.