zbMATH — the first resource for mathematics

Pattern detection and discovery. ESF exploratory workshop, London, UK, September 16–19, 2002. Proceedings. (English) Zbl 1007.68737
Lecture Notes in Computer Science 2447. Lecture Notes in Artificial Intelligence. Berlin: Springer. xii, 227 p. (2002).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Hand, David J., Pattern detection and discovery, 1-12 [Zbl 1019.68693]
Morik, Katharina, Detecting interesting instances, 13-23 [Zbl 1019.68736]
Siebes, Arno; Struzik, Zbyszek, Complex data: Mining using patterns, 24-35 [Zbl 1019.68762]
Bolton, Richard J.; Hand, David J.; Adams, Niall M., Determining hit rate in pattern search, 36-48 [Zbl 1019.68653]
Cohen, Paul; Heeringa, Brent; Adams, Niall M., An unsupervised algorithm for segmenting categorical timeseries into episodes, 49-62 [Zbl 1019.68663]
Unwin, Antony, If you can’t see the pattern, is it there?, 63-76 [Zbl 1019.68780]
Wojciechowski, Marek; Zakrzewicz, Maciej, Dataset filtering techniques in constraint-based frequent pattern mining, 77-91 [Zbl 1019.68789]
Kryszkiewicz, Marzena, Concise representations of association rules, 92-109 [Zbl 1019.68715]
Jeudy, Baptiste; Boulicaut, Jean-François, Constraint-based discovery and inductive queries: Application to association rule mining, 110-124 [Zbl 1019.68702]
Goethals, Bart; Van den Bussche, Jan, Relational association rules: Getting WARMeR, 125-139 [Zbl 1019.68685]
Delgado, M.; Martín-Bautista, M. J.; Sánchez, D.; Vila, M. A., Mining text data: Special features and patterns, 140-153 [Zbl 1019.68668]
Spiliopoulou, Myra; Pohle, Carsten, Modelling and incorporating background knowledge in the web mining process, 154-169 [Zbl 1019.68767]
Mladenić, Dunja, Modeling information in textual data combining labeled and unlabeled data, 170-179 [Zbl 1019.68733]
Ahonen-Myka, Helena, Discovery of frequent word sequences in text, 180-189 [Zbl 1019.68636]
Rolland, Pierre-Yves; Ganascia, Jean-Gabriel, Pattern detection and discovery: The case of music data mining, 190-198 [Zbl 1019.68756]
Höppner, Frank, Discovery of core episodes from sequences. Using generalization for defragmentation of rule sets, 199-213 [Zbl 1019.68696]
Gather, Ursula; Fried, Roland; Imhoff, Michael; Becker, Claudia, Patterns of dependencies in dynamic multivariate data, 214-226 [Zbl 1019.68682]

68U99 Computing methodologies and applications
68-06 Proceedings, conferences, collections, etc. pertaining to computer science
68P15 Database theory
68P20 Information storage and retrieval of data
68T10 Pattern recognition, speech recognition
Full Text: Link