zbMATH — the first resource for mathematics

Continuum percolation thresholds for mixtures of spheres of different sizes. (English) Zbl 1008.60104
Summary: Using Monte-Carlo simulations, we find the continuum percolation threshold of a three-dimensional mixture of spheres of two different sizes. We fix the value of \(r\), the ratio of the volume of the smaller sphere to the volume of the larger sphere, and determine the percolation threshold for various values of \(x\), the ratio of the number of larger objects to the number of total objects. The critical volume fraction increases from \(\varphi_c=0.28955\pm 0.00007\) for equal-sized spheres to a maximum of \(\varphi_c^{\max}=0.29731\pm 0.00007\) for \(x\approx 0.11\), an increase of \(2.7 \%\).

60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI
[1] Stauffer, D.; Aharony, A., Introduction to percolation theory, (1994), Taylor & Francis London
[2] Bunde, A.; Havlin, S., Fractal and disordered systems, (1996), Springer Berlin
[3] Kerstein, A.R.; Elam, W.T.; Kerstein, A.R.; Rehr, J.J., J. phys. A, Phys. rev. lett., 52, 1516, (1984)
[4] Rintoul, M.D., Phys. rev. E, 62, 68, (2000)
[5] van der Mark, S.C., Phys. rev. lett., 77, 1785, (1996)
[6] Balberg, I.; Balberg, I.; Balberg, I., Philos. mag. B, Phys. rev. A, Phys. rev. A, 43, 6604, (1991)
[7] Balberg, I.; Anderson, C.H.; Alexander, S.; Wagner, N., Phys. rev. B, 30, 3933, (1984)
[8] Lorentz, C.D.; Ziff, R.M., J. chem. phys., 114, 3659, (2001)
[9] Quintanilla, J.; Torquato, S., J. chem. phys., 111, 5947, (1999)
[10] Balberg, I., Phys. rev. B, 31, 4053, (1985)
[11] Torquato, S.; Truskett, T.M.; Debenedetti, P.G., Phys. rev. lett., 84, 2064, (2000)
[12] Quintanilla, J., Phys. rev. E, 63, 061108, (2001)
[13] Lorenz, B.; Orgzall, I.; Heuer, H.-O., J. phys. A, 26, 4711, (1993)
[14] Garboczi, E.J.; Snyder, K.A.; Douglas, J.F.; Thorpe, M.F., Phys. rev. E, 52, 819, (1995)
[15] D.R. Baker, G. Paul, S. Sreenivasan, H.E. Stanley, Phys. Rev. E (cond-mat/0203235 v1), to be published in Phys. Rev. E.
[16] Rosso, M.; Gouyet, J.F.; Sapoval, B., Phys. rev. lett., 57, 3195, (1986)
[17] Ballesteros, H.G.; Fernandez, L.A.; Martin-Mayor, V.; Munoz Sudupe, A.; Parisi, G.; Ruiz-Lorenzo, J.J., J. phys. A, 32, 1, (1999)
[18] Leath, P.L., Phys. rev. B, 14, 5046, (1976)
[19] Saar, M.O.; Manga, M.; Cashman, K.V.; Fremouw, S., Earth planet sci. lett., 187, 367, (2001)
[20] Chandrasekhar, S., Rev. mod. phys., 15, 1, (1943)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.