×

Towards the classification of static vacuum spacetimes with negative cosmological constant. (English) Zbl 1009.83009

Summary: We present a systematic study of static solutions of the vacuum Einstein equations with negative cosmological constant which asymptotically approach the generalized Kottler (“Schwarzschild-anti-de Sitter”) solution, within (mainly) a conformal framework. We show connectedness of conformal infinity for appropriately regular such spacetimes. We give an explicit expression for the Hamiltonian mass of the (not necessarily static) metrics within the class considered; in the static case we show that they have a finite and well-defined Hawking mass. We prove equalities relating the mass and the horizon area of the (static) metrics considered to those of appropriate reference generalized Kottler metrics. Those inequalities yield an inequality which is opposite to the conjectured generalized Penrose inequality. They can thus be used to prove a uniqueness theorem for the generalized Kottler black holes if the generalized Penrose inequality can be established.

MSC:

83C15 Exact solutions to problems in general relativity and gravitational theory
83F05 Relativistic cosmology
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Sitter W. D., Proc. K. Ned. Akad. Wet. 20 pp 229– (1917)
[2] Kottler F., Ann. Phys. (Leipzig) 56 pp 401– (1918) · JFM 46.1306.01
[3] Nariai H., Sci. Rep.Tohoku Univ. Ser. 1 35 pp 62– (1951)
[4] Galloway G., Phys. Rev. D 60 pp 104039– (1999)
[5] DOI: 10.1103/PhysRevD.56.6475
[6] Mann R. B., Class. Quantum Grav. 14 pp L109– (1997) · Zbl 0873.53073
[7] DOI: 10.1103/PhysRevD.56.3600
[8] DOI: 10.1103/PhysRev.164.1776
[9] Bunting G., Gen. Relativ. Gravit. 19 pp 147– (1987) · Zbl 0615.53055
[10] Chruściel P., Class. Quantum Grav. 16 pp 661– (1999) · Zbl 0947.83031
[11] Boucher W., Phys. Rev. D 30 pp 2447– (1984)
[12] Penrose R., Riv. Nuovo Cimento 1 pp 252– (1969)
[13] DOI: 10.1111/j.1749-6632.1973.tb41445.x · Zbl 0942.53509
[14] Huisken G., Int. Math. Res. Not. 20 pp 1045– (1997) · Zbl 0905.53043
[15] H. Bray, math.DG/9911173.
[16] Gibbons G., Class. Quantum Grav. 16 pp 1677– (1999) · Zbl 0956.83012
[17] DOI: 10.1063/1.523134
[18] E. Witten and S. Yau, hep-th/9910245.
[19] G. Galloway, K. Schleich, D. Witt, and E. Woolgar, hep-th/9912119.
[20] Horowitz G., Phys. Rev. D 59 pp 026005– (1999)
[21] Andersson L., Ann. Global Anal. Geom. 16 pp 1– (1998) · Zbl 0946.53021
[22] DOI: 10.1007/BF01213209
[23] DOI: 10.1007/BF00128299 · Zbl 0694.53043
[24] DOI: 10.1007/BF01205790 · Zbl 1032.83502
[25] DOI: 10.1016/0370-2693(83)90585-3
[26] Ashtekar A., Class. Quantum Grav. 1 pp L39– (1984)
[27] Woolgar E., Class. Quantum Grav. 16 pp 3005– (1999) · Zbl 1007.83022
[28] DOI: 10.1007/BF01941970 · Zbl 0456.53036
[29] Andersson L., Diss. Math. 355 pp 1– (1996)
[30] Andersson L., Commun. Math. Phys. 149 pp 587– (1992) · Zbl 0764.53027
[31] Lindblom L., J. Math. Phys. 29 pp 436– (1988) · Zbl 0641.76139
[32] DOI: 10.1098/rspa.1965.0058 · Zbl 0129.41202
[33] Friedrich H., J. Geom. Phys. 17 pp 125– (1995) · Zbl 0840.53055
[34] Kánnár J., Class. Quantum Grav. 13 pp 3075– (1996) · Zbl 0869.53057
[35] Magnon A., J. Math. Phys. 26 pp 3112– (1985) · Zbl 0583.53063
[36] DOI: 10.1007/BF01645486
[37] DOI: 10.1063/1.1664763 · Zbl 0165.58902
[38] DOI: 10.1063/1.1664717 · Zbl 0182.60001
[39] Brill D., Phys. Rev. D 49 pp 840– (1994)
[40] Kastor D., Phys. Rev. D 47 pp 5370– (1993)
[41] DOI: 10.1007/BF00763437 · Zbl 0346.57002
[42] DOI: 10.1063/1.522498 · Zbl 0326.53060
[43] DOI: 10.1016/0550-3213(82)90049-9 · Zbl 0900.53033
[44] Ashtekar A., Class. Quantum Grav. 17 pp L17– (2000) · Zbl 0943.83023
[45] DOI: 10.1002/cpa.3160390505 · Zbl 0598.53045
[46] Chruściel P., Ann. Inst. Henri Poincare 42 pp 267– (1985)
[47] Kijowski J., Gen. Relativ. Gravit. 29 pp 307– (1997) · Zbl 0873.53070
[48] DOI: 10.1007/BF00759646 · Zbl 0429.49019
[49] Beig R., Phys. Lett. 69 pp 153– (1978)
[50] DOI: 10.1063/1.1664615
[51] Beig R., Commun. Math. Phys. 144 pp 373– (1992) · Zbl 0760.53043
[52] Gönner H., J. Math. Phys. 11 pp 3358– (1970) · Zbl 0204.57703
[53] DOI: 10.1007/BF01645695
[54] Chruściel P., Class. Quantum Grav. 16 pp 689– (1999) · Zbl 0947.83015
[55] DOI: 10.1063/1.1665393
[56] Kennefick D., Class. Quantum Grav. 12 pp 149– (1995) · Zbl 0816.53059
[57] DOI: 10.1063/1.525846 · Zbl 0515.53025
[58] Anderson M., Ann. Henri Poincaré 1 pp 977– (2000) · Zbl 1005.53055
[59] Anderson M., Ann. Henri Poincaré 1 pp 995– (2000) · Zbl 0981.83013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.