A numerical evaluation of the scalar hexagon integral in the physical region. (English) Zbl 1010.81060

Summary: We derive an analytic expression for the scalar one-loop pentagon and hexagon functions which is convenient for subsequent numerical integration. These functions are of relevance in the computation of next-to-leading order radiative corrections to multi-particle cross sections. The hexagon integral is represented in terms of \(n\)-dimensional triangle functions and \((n+2)\)-dimensional box functions. If infrared poles are present this representation naturally splits into a finite and a pole part. For a fast numerical integration of the finite part we propose simple one- and two-dimensional integral representations. We set up an iterative numerical integration method to calculate these integrals directly in an efficient way. The method is illustrated by explicit results for pentagon and hexagon functions with some generic physical kinematics.


81T18 Feynman diagrams
65D30 Numerical integration


Full Text: DOI arXiv


[1] Bern, Z.; Dixon, L.J.; Dunbar, D.C.; Kosower, D.A., Nucl. phys. B, 435, 59, (1995)
[2] Binoth, T.; Guillet, J.P.; Heinrich, G.; Schubert, C.; Binoth, T., Nucl. phys. B, 615, 385, (2001)
[3] Soper, D.E.; Soper, D.E.; Krämer, M.; Soper, D.E., Phys. rev. lett., Phys. rev. D, 62, 014009, (2000)
[4] Passarino, G.; Veltman, M.J.; Stuart, R.G.; Devaraj, G.; Stuart, R.G.; Bern, Z.; Chalmers, G., Nucl. phys. B, Comput. phys. commun., Nucl. phys. B, Nucl. phys. B, 447, 465, (1995)
[5] Binoth, T.; Guillet, J.P.; Heinrich, G., Nucl. phys. B, 572, 361, (2000)
[6] Tarasov, O.V., Phys. rev. D, 54, 6479, (1996)
[7] van Neerven, W.L.; Vermaseren, J.A.M., Phys. lett. B, 137, 241, (1984)
[8] Bern, Z.; Dixon, L.; Kosower, D.A.; Bern, Z.; Dixon, L.; Kosower, D.A.; Bern, Z.; Dixon, L.; Kosower, D.A., Phys. lett. B, Phys. lett. B, Nucl. phys. B, 412, 751, (1994), Erratum
[9] Suzuki, A.T.; Santos, E.S.; Schmidt, A.G.
[10] Fleischer, J.; Jegerlehner, F.; Tarasov, O.V., Nucl. phys. B, 566, 423, (2000)
[11] ’t Hooft, G.; Veltman, M., Nucl. phys. B, 153, 365, (1979)
[12] Denner, A.; Nierste, U.; Scharf, R., Nucl. phys. B, 367, 637, (1991)
[13] van Oldenborgh, G.J.; Vermaseren, J.A.M., Z. phys. C, 46, 425, (1990)
[14] Passarino, G., Nucl. phys. B, 619, 257, (2001)
[15] Ferroglia, A.; Passarino, G.; Passera, M.; Uccirati, S.
[16] Tkachov, F.V., Nucl. instrum. methods A, 389, 309, (1997)
[17] Eden, R.J.; Landshoff, P.V.; Olive, D.I.; Polkinghorne, J.C., The analytic S-matrix, (1966), Cambridge Univ. Press · Zbl 0139.46204
[18] Binoth, T.; Heinrich, G., Nucl. phys. B, 585, 741, (2000)
[19] Roth, M.; Denner, A., Nucl. phys. B, 479, 495, (1996)
[20] Duplancic, G.; Nizic, B., Eur. phys. J. C, 24, 385, (2002)
[21] Campbell, J.M.; Glover, E.W.N.; Miller, D.J., Nucl. phys. B, 498, 397, (1997)
[22] Duplancic, G.; Nizic, B., Eur. phys. J. C, 20, 357, (2001)
[23] G.P. Lepage, Preprint CLNS-80/447 (1980)
[24] Espelid, T.O.; Genz, A.; Singstad, K.; Espelid, T.O.; Lyness, J.N., Numerical algorithms, J. comput. appl. math., Math. comp., 30, 1, (1976), and references therein
[25] Piessens, R., Quadpack, (1983), Springer-Verlag · Zbl 0508.65005
[26] Press, W.H., Numerical recipes, (1992), Cambridge Univ. Press · Zbl 0778.65003
[27] Berntsen, J.; Espelid, T.O.; Genz, A.; Berntsen, J.; Espelid, T.O.; Genz, A., ACM trans. math. softw., ACM trans. math. softw., 17, 452, (1991)
[28] Hahn, T.; Hahn, T.; Perez-Victoria, M., Comput. phys. commun., 118, 153, (1999), FormCalc and LoopTools user’s guide, available at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.