×

Simulation of bi-direction pedestrian movement using a cellular automata model. (English) Zbl 1011.90011

Summary: A cellular automata model is presented to simulate the bi-direction pedestrian movement. The pedestrian movement is more complex than vehicular flow for the reason that people are more flexible than cars. Some special technique is introduced considering simple human judgment to make the rules more reasonable. Also the custom in the countries where the pedestrian prefer to walk on the right-hand side of the road are highlighted. By using the model to simulate the bi-direction pedestrian movement, the phase transition phenomena in pedestrian counter flow is presented. Furthermore, the introduction of back stepping breaks the deadlock at the relatively low pedestrian density. By studying the critical density of changing from freely moving state to jammed state with different system sizes and different probabilities of back stepping, we find the critical density increases as the probability of back stepping increases at the same system size. And with the increasing system size, the critical density decreases at the same probability of back stepping according to the scope of system size studied in this paper.

MSC:

90B20 Traffic problems in operations research
82C32 Neural nets applied to problems in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] D.E. Wolf, M. Schreckenberg, A. Bachem (Eds.), Traffic and Granular Flow, World Scientific, Singapore, 1996.
[2] Helbing, D., Verkehrsdynamik, (1997), Springer Berlin
[3] M. Schreckenberg, D.E. Wolf (Eds.), Traffic and Granular Flow ’97, Springer, Berlin, 1998.
[4] D. Helbing, H.J. Herrmann, M. Schreckenberg, D.E. Wolf (Eds.), Traffic and Granular Flow ’99, Springer, Berlin, 2000. · Zbl 0942.00072
[5] Schreckenberg, M.; Schadschneider, A.; Nagatani, T.; Ito, N., Phys. rev. E, 51, 2939, (1995)
[6] Wolf, D.E., Physica A, 263, 438, (1999)
[7] Schadschneider, A., Physica A, 285, 101, (2000)
[8] Kerner, B.S.; Rehborn, H., Phys. rev. E, 53, R1297, (1996)
[9] Kerner, B.S.; Rehborn, H., Phys. rev. E, 53, R4275, (1996)
[10] B.S. Kerner, in: M. Schreckenberg, D.E. Wolf (Eds.), Traffic and Granular Flow ’97, Springer, Singapore, 1998.
[11] Wolfram, S., Theory and applications of cellular automata, (1986), World Scientific Singapore
[12] Wolfram, S., Cellular automata and complexity, (1994), Addison-Wesley Reading, MA · Zbl 0823.68003
[13] Kai, N.; Michael, S., J. phys. I, 2, 12, 2221, (1992)
[14] Fukui, M.; Ishibashi, Y., J. phys. soc. Japan, 65, 6, 1868, (1996)
[15] Biham, O.; Middelton, A.A.; Levine, D.A., Phys. rev. A, 46, R6124, (1992)
[16] Cuesta, J.A.; Matinez, F.C.; Molera, J.M.; Sanchez, A., Phys. rev. E, 48, 4175, (1993)
[17] Nagatani, T., Phys. rev. E, 48, 3290, (1993)
[18] Chung, K.H.; Hui, P.M.; Gu, G.Q., Phys. rev. E, 51, 772, (1995)
[19] Burstedde, C.; Klauck, K.; Schadschneider, A.; Zittartz, J., Physica A, 295, 507, (2001) · Zbl 0978.90018
[20] Helbing, D.; Farkas, L.; Vicsek, T., Nature, 407, 28, 487, (2000)
[21] Blue, V.J.; Adler, J.L., Transp. res. part B, 35, 293, (2001)
[22] Muramatsu, M.; Irie, T.; Nagatani, T., Physica A, 267, 487, (1999)
[23] Muramatsu, M.; Nagatani, T., Physica A, 275, 281, (2000) · Zbl 1052.90530
[24] Muramatsu, M.; Nagatani, T., Physica A, 286, 377, (2000) · Zbl 1052.90530
[25] Tajima, Y.; Nagatani, T., Physica A, 292, 545, (2000) · Zbl 0972.90011
[26] Tajima, Y.; Takimoto, K.; Nagatani, T., Physica A, 294, 257, (2000) · Zbl 0978.90016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.