zbMATH — the first resource for mathematics

Upper bounds on a two-term exponential sum. (English) Zbl 1012.11078
The authors derive upper bounds for mixed exponential sums of type \[ S( \chi, a x^n + bx, p^m) = \sum_{_{\substack{ x=1\\ p \nmid x}}}^{p^m} \chi(x) e_{p^m}(a x^n + bx), \] where \(p^m\) is a prime power with \(m \geq 2\), \(a,b\) are integers, \(n \geq 2\), \(\chi\) is a multiplicative character mod \(p^m\) and \(e_{p^m}(x) = \exp(2 \pi i x/p^m)\) . If \(\chi\) is primitive or \(p \nmid (a,b)\) , then they obtain \[ |S(\chi, ax^n +bx, p^m)|\leq 2 n p^{2m/3}. \] If \(\chi\) is of conductor \(p\) with \(p \nmid (a,b)\), then \[ |S(\chi, ax^n +bx, p^m)|\leq n p^{m/2}. \]

11L07 Estimates on exponential sums
Full Text: DOI
[1] Davenport, H., Heibronn, H., On an exponential sum, Proc. Land. Math. Soc., 1936, 41(2): 449–453. · Zbl 0014.25201
[2] Hua, L. K., On exponential sums, Sci. Record (Peking) (N.S.), 1957, 1: 1–4. · Zbl 0083.04204
[3] Vaughan. R. C., The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math., Cambridge: Cambridge Univ. Press, 1997, 125. · Zbl 0868.11046
[4] Weil, A., On some exponential sums, Proc. Nat. Acad. Sci. USA, 1948, 34: 204–207. · Zbl 0032.26102
[5] Cochrane, T., Zheng, Z., Pure and mixed exponential sums, Acta Arith., 1999, 91(3): 249–278. · Zbl 0937.11031
[6] Chalk, J. H. H., On Hua’s estimate for exponential sums, Mathematika, 1987, 34: 115–123. · Zbl 0621.10024
[7] Loh, W. K. A., Hua’s Lemma, Bull. Australian Math. Soc., 1994, 50(3): 451–458. · Zbl 0833.11040
[8] Ding, P., An improvement to Chalk’s estimation of exponential sums, Acta Arith., 1991, 59(3): 149–155. · Zbl 0697.10031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.