×

zbMATH — the first resource for mathematics

Nonlocal Cauchy problems on semi-infinite intervals for neutral functional-differential and integrodifferential inclusions in Banach spaces. (English) Zbl 1012.34059
Summary: Here, the authors investigate the existence of mild solutions on infinite intervals to initial value problems for neutral functional-differential and integrodifferential inclusions in Banach spaces with nonlocal conditions. A fixed-point theorem due to Ma, which is an extension of Schaefer’s theorem on locally convex topological spaces, is used.

MSC:
34G25 Evolution inclusions
34K40 Neutral functional-differential equations
34K30 Functional-differential equations in abstract spaces
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BALACHANDRAN K.-CHANDRASEKARAN M.: Existence of solutions of a delay differential equation with nonlocal condition. Indian J. Pure Appl. Math. 27 (1996), 443-449. · Zbl 0854.34065
[2] BENCHOHRA M.-NTOUYAS S.: Existence of mild solutions on noncompact intervals to second order initial value problems for a class of differential inclusions with nonlocal conditions. Comput. Math. Appl. 39 (2000), 11-18. · Zbl 0955.34047
[3] BENCHOHRA M.-NTOUYAS S.: Existence of mild solutions on semiinfinite interval for first order drfferential equations with nonlocal conditions. Comment. Math. Univ. Carolin. 41 (2000), 485-491. · Zbl 1045.34036
[4] BENCHOHRA M.-NTOUYAS S.: Existence of mild solutions of semilinear evolution inclusions with nonlocal conditions. Georgian Math. J. 7 (2000), 221-230. · Zbl 0960.34049
[5] BENCHOHRA M.-NTOUYAS S.: An existence result for semilinear delay integrodifferential inclusions of Sobolev type with nonlocal conditions. Comm. Appl. Nonlinear Anal. 7 (2000), 21-30. · Zbl 1110.34341
[6] BENCHOHRA M.-NTOUYAS S.: Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal conditions. Dynam. Systems Appl. 9 (2000), 405-412. · Zbl 0974.34076
[7] BENCHOHRA M.-NTOUYAS S.: Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces. J. Math. Anal. Appl. 258 (2001), 573-590. · Zbl 0982.45008
[8] BYSZEWSKI L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (1991), 494-505. · Zbl 0748.34040
[9] BYSZEWSKI L.-AKCA H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stochastic Anal. 10 (1997), 265-271. · Zbl 1043.34504
[10] CONSTANTIN A.: Global existence of solutions for perturbed differentral equatrons. J. Annali Mat. Pura. Appl. 168 (1995), 237-299.
[11] DAUER J.-BALACHANDRAN K.: Existence of solutions for an integrodifferential equation with nonlocal condition in Banach spaces. Libertas Math. 16 (1996), 133-143. · Zbl 0862.45016
[12] DEIMLING K.: Multivalued Differential Equations. Walter de Gruyter, Berlin-New York, 1992. · Zbl 0820.34009
[13] DUGUNDJI J.-GRANAS A.: Fixed Point Theory. Monografie Matematyczne, PWN Warsawa, 1982. · Zbl 0483.47038
[14] ERBE L.-KONG Q.-ZHANG B. : Oscillation Theory for Functional Differential Equations. Pure and Applied Mathematics, Marcel Dekker 190, Marcel Dekker, Inc, New York. 1994. · Zbl 0821.34067
[15] HALE J.: Theory of Functional Differential Equations. Springer, New York, 1977. · Zbl 0352.34001
[16] HENDERSON J.: Boundary Value Problems for Functional Differential Equations. World Scientific, Singapore, 1995. · Zbl 0841.34068
[17] HERNANDEZ E.-HENRIQUEZ H.: Existence results for partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl. 221 (1998), 452-475. · Zbl 0915.35110
[18] HERNANDEZ E.-HENRIQUEZ H.: Existence of periodic solutions of partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl. 221 (1998), 499-522. · Zbl 0926.35151
[19] HU S.-PAPAGEORGIOU N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer, Dordrecht-Boston-London, 1997. · Zbl 0887.47001
[20] LASOTA A.-OPIAL Z.: An application of the Kakutani-Ky-Fan theorem, in the theory of ordinary differential equations. Bull. Polish Acad. Sci. Math. 13 (1965), 781-786. · Zbl 0151.10703
[21] LIN Y.-LIU, J : Semilinear integrodifferential equations with nonlocal Cauchy problem. Nonlinear Anal. 26 (1996), 1023-1033. · Zbl 0916.45014
[22] MA T.: Topological degrees for set-valued compact vector fields in locally convex spaces. Dissertationes Math. (Rozprawy Mat.) 92 (1972), 1-43.
[23] MARTELLI M.: A Rothe’s type theorem for non-compact acyclic-valued map. Boll. Un. Mat. Ital. (4) Ser. 11, Suppl. Fasc. no. 3 (1975), 70-76. · Zbl 0314.47035
[24] NTOUYAS S.: Global existence results for certain second order delay integrodifferential equations with nonlocal conditions. Dynam. Systems Appl. 7 (1998), 415-426. · Zbl 0914.35148
[25] NTOUYAS S.-TSAMATOS P.: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 210 (1997), 679-687. · Zbl 0884.34069
[26] NTOUYAS S.-TSAMATOS P.: Global existence for second order semilinear ordinary and delay integrodifferential equations with nonlocal conditions. Appl. Anal. 67 (1997), 245-257. · Zbl 0906.35110
[27] NTOUYAS S.-TSAMATOS P.: Global existence for semilinear evolution integrodifferential equations with delay and nonlocal conditions. Appl. Anal. 64 (1997), 99-105. · Zbl 0874.35126
[28] PAPAGEORGIOU N.: Boundary value problems for evolution inclusions. Comment. Math. Univ. Carolin. 29 (1988), 355-363. · Zbl 0696.35074
[29] PAZY A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York, 1983. · Zbl 0516.47023
[30] SCHAEFER H. : Über die Methode der a priori-Schranken. Math. Ann. 129 (1955), 415-416. · Zbl 0064.35703
[31] YOSIDA K.: Functional Analysis. (6th, Springer-Verlag, Berlin, 1980. · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.