zbMATH — the first resource for mathematics

Gaussian approximation theorems for urn models and their applications. (English) Zbl 1014.60025
The authors consider weak and strong Gaussian approximations for a two-color generalized Friedman’s urn model with homogeneous and nonhomogeneous generating matrices. The authors present functional central limit theorems and the laws of iterated logarithm. As an application, asymptotic properties for the randomized play-the-winner rule are obtained. Based on the Gaussian approximations, the authors also get some variance estimators for the urn model.

60F15 Strong limit theorems
60F05 Central limit and other weak theorems
62E10 Characterization and structure theory of statistical distributions
Full Text: DOI
[1] ATHREy A, K. B. and KARLIN, S. (1968). Embedding of urn schemes into continuous time branching processes and related limit theorems. Ann. Math. Statist. 39 1801-1817. · Zbl 0185.46103 · doi:10.1214/aoms/1177698013
[2] BAI, Z. D. and HU, F. (1999). Asy mptotic theorem for urn models with nonhomogeneous generating matrices. Stochastic Process. Appl. 80 87-101. · Zbl 0954.62014 · doi:10.1016/S0304-4149(98)00094-5
[3] BAI, Z. D. and HU, F. (2000). Strong consistency and asy mptotic normality for urn models. Unpublished manuscript.
[4] BAI, Z. D., HU, F. and SHEN, L. (2002). An adaptive design for multiarm clinical trials. J. Multivariate Anal. 81 1-18. · Zbl 1011.62079 · doi:10.1006/jmva.2001.1987
[5] COAD, D.S. (1991). Sequential tests for an unstable response variable. Biometrika 78 113-121. JSTOR: · Zbl 0744.62110 · doi:10.1093/biomet/78.1.113 · links.jstor.org
[6] CSÖRG O, M. and RÉVÉSZ, P. (1981). Strong Approximations in Probability and Statistics. Academic Press, New York. · Zbl 0539.60029
[7] DAVIDSON, J. (1994). Stochastic Limit Theory. Oxford Univ. Press. · Zbl 0904.60002 · doi:10.1093/0198774036.001.0001
[8] FLOURNOY, N. and ROSENBERGER, W. F., eds. (1995). Adaptive Designs. IMS, Hay ward, CA.
[9] GOUET, R. (1993). Martingale functional central limit theorems for a generalized Póly a urn. Ann. Probab. 21 1624-1639. · Zbl 0788.60044 · doi:10.1214/aop/1176989134
[10] HALL, P. and HEy DE, C. C. (1980). Martingale Limit Theory and Its Applications. Academic Press, London. · Zbl 0462.60045
[11] HU, F. and ROSENBERGER, W. F. (2000). Analy sis of time trends in adaptive designs with application to a neurophysiology experiment. Statistics in Medicine 19 2067-2075.
[12] HU, F., ROSENBERGER, W. F. and ZIDÉK, J. V. (2000). Relevance weighted likelihood for dependent data. Matrika 51 223-243. · Zbl 1093.62521 · doi:10.1007/s001840000051
[13] ROSENBERGER, W. F. (1996). New directions in adaptive designs. Statist. Sci. 11 137-149.
[14] ROSENBERGER, W. F. and GRILL, S. E. (1997). A sequential design for psy chophysical experiments: An application to estimating timing of sensory events. Statistics in Medicine 16 2245-2260.
[15] ROSENBERGER, W. F. and SRIRAM, T. N. (1997). Estimation for an adaptive allocation design. J. Statist. Plann. Inference 59 309-319. · Zbl 0900.62036 · doi:10.1016/S0378-3758(96)00109-7
[16] SHAO, Q. M. (1994). Self-normalized central limit theorem for sums of weakly dependent random variables. J. Theoret. Probab. 7 309-338. · Zbl 0799.60020 · doi:10.1007/BF02214272
[17] SMy THE, R. T. (1996). Central limit theorems for urn models. Stochastic Process. Appl. 65 115- 137. · Zbl 0889.60013 · doi:10.1016/S0304-4149(96)00094-4
[18] SMy THE, R. T. and ROSENBERGER, W. F. (1995). Play-the-winner designs, generalized Póly a urns, and Markov branching processes. In Adaptive Designs (N. Flournoy and W. F. Rosenberger, eds.) 13-22. Hay ward, CA. · Zbl 0949.62578
[19] WEI, L. J. (1979). The generalized Póly a’s urn design for sequential medical trials. Ann. Statist. 7 291-296. · Zbl 0399.62083 · doi:10.1214/aos/1176344614
[20] WEI, L. J. and DURHAM, S. (1978). The randomized pay-the-winner rule in medical trials. J. Amer. Statist. Assoc. 73 840-843. · Zbl 0389.62067 · doi:10.2307/2286600
[21] WEI, L. J., SMy THE, R. T., LIN, D. Y. and PARK, T. S. (1990). Statistical inference with datadependent treatment allocation rules. J. Amer. Statist. Assoc. 85 156-162. JSTOR: · doi:10.2307/2289538 · links.jstor.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.