zbMATH — the first resource for mathematics

Spectral flow and Dixmier traces. (English) Zbl 1015.19003
The authors show how the Dixmier trace can be calculated in terms of the asymptotics of the zeta function and of the heat operator in a general semi-finite von Neumann algebra. As applications, they deduce a formula for the Chern character of an odd \({\mathcal L}^{(1,\infty)}\)-summable Breuer-Fredholm module in terms of a Hochschild 1-cycle and explain how to derive a Wodzicki residue for pseudo-differential operators along the orbits of an ergodic \({\mathbb R}^n\)-action on a compact space.

19K56 Index theory
46L80 \(K\)-theory and operator algebras (including cyclic theory)
46L87 Noncommutative differential geometry
58B34 Noncommutative geometry (à la Connes)
Full Text: DOI arXiv
[1] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Govt. Print. Off, Washington, 1964. · Zbl 0171.38503
[2] Birman, M.S.; Koplienko, L.S.; Solomyak, M.Z., Estimates for the spectrum of the difference between fractional powers of two selfadjoint operators, Soviet math., 19, 3, 1-6, (1975) · Zbl 0313.47020
[3] Bratteli, O.; Robinson, D., Operator algebras and quantum statistical mechanics I, (1979), Springer New York, Heidelberg, Berlin
[4] Connes, A.; Moscovici, H., The local index formula in non-commutative geometry, Geom. funct. anal., 5, 174-243, (1995) · Zbl 0960.46048
[5] Carey, A.L.; Phillips, J., Unbounded Fredholm modules and spectral flow, Canad. J. math., 50, 4, 673-718, (1998) · Zbl 0915.46063
[6] A.L. Carey, J. Phillips, Theta summable Fredholm modules, eta invariants and spectral flow, Preprint. · Zbl 1051.19004
[7] Carey, A.L.; Phillips, J.; Sukochev, F.A., On unbounded p-summable Fredholm modules, Adv. in math., 151, 140-163, (2000) · Zbl 0960.46039
[8] Connes, A., Noncommutative differential geometry, Publ. math. inst. hautes etudes sci. (Paris), 62, 41-144, (1985) · Zbl 0592.46056
[9] Connes, A., Cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules, K-theory, 1, 519-548, (1988) · Zbl 0657.46049
[10] Connes, A., Compact metric spaces, Fredholm modules and hyperfiniteness, Ergodic theory dyn. systems, 9, 207-220, (1989) · Zbl 0718.46051
[11] Connes, A., Noncommutative geometry, (1994), Academic Press San Diego · Zbl 0681.55004
[12] Chilin, V.I.; Sukochev, F.A., Weak convergence in non-commutative symmetric spaces, J. operator theory, 31, 35-65, (1994) · Zbl 0836.46057
[13] Dixmier, J., LES algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), (1969), Gauthier-Villars Paris
[14] Dixmier, J., Existence de traces non-normales, C.R. acad. sci. Paris A-B, 262, A1107-A1108, (1966)
[15] Dodds, P.G.; de Pagter, B.; Semenov, E.M.; Sukochev, F.A., Symmetric functionals and singular traces, Positivity, 2, 47-75, (1998) · Zbl 0915.46021
[16] Edwards, R.E., Functional analysis: theory and applications, (1965), Holt, Rinehart and Winston New York · Zbl 0182.16101
[17] Fack, T., Sur la notion de valeur caractéristique, J. operator theory, 7, 307-333, (1982) · Zbl 0493.46052
[18] Fack, T.; Kosaki, H., Generalised s-numbers of τ-measurable operators, Pacific J. math., 123, 269-300, (1986) · Zbl 0617.46063
[19] Greenleaf, F.P., Invariant means on topological groups, (1969), Van Nostrand Reinhold New York · Zbl 0174.19001
[20] Gohberg, I.C.; Krein, M.G., Introduction to the theory of non-selfadjoint operators, Translations of mathematical monographs, Vol. 18, (1969), Amer. Math. Soc Providence, RI · Zbl 0181.13504
[21] Gromov, M., Kähler-hyperbolicity and L2 Hodge theory, J. differential geom., 33, 263-292, (1991) · Zbl 0719.53042
[22] Gracia-Bondia, J.M.; Varilly, J.C.; Figueroa, H., Elements of noncommutative geometry, (2001), Birkhauser Boston · Zbl 0958.46039
[23] Hardy, G.H., Divergent series, (1949), Clarendon Oxford · Zbl 0032.05801
[24] Kadison, R.; Ringrose, J., Fundamentals of the theory of operator algebras, (1983), Birkhauser Boston · Zbl 0518.46046
[25] Lesch, M., On the index of the infinitesimal generator of a flow, J. operator theory, 26, 73-92, (1991) · Zbl 0784.46041
[26] R. Prinzis, Traces residuelles et asymptotique du Spectre d’opérateurs pseudo-differentiels, Thèse, Université de Lyon, unpublished.
[27] Phillips, J., Self-adjoint Fredholm operators and spectral flow, Canad. math. bull., 39, 460-467, (1996) · Zbl 0878.19001
[28] Phillips, J., Spectral flow in type I and II factors—A new approach, Fields inst. comm., 17, 137-153, (1997) · Zbl 0891.46044
[29] Phillips, J.; Raeburn, I., An index theorem for Toeplitz operators with noncommutative symbol space, J. funct. anal., 120, 239-263, (1994) · Zbl 0815.47033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.