×

zbMATH — the first resource for mathematics

Approximation and comparison for nonsmooth anisotropic motion by mean curvature in \(\mathbb{R}^N\). (English) Zbl 1016.53048

MSC:
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
35K55 Nonlinear parabolic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0001-6160(79)90196-2
[2] Almgren F. J., J. Differential Geom. 42 pp 1– (1995) · Zbl 0867.58020
[3] DOI: 10.1006/jdeq.1997.3288 · Zbl 0882.35028
[4] Bellettini G., Differential Integral Equations 8 pp 735– (1995)
[5] DOI: 10.14492/hokmj/1351516749 · Zbl 0873.53011
[6] DOI: 10.1007/BF01758994 · Zbl 0890.49020
[7] DOI: 10.1016/0022-0396(92)90146-E · Zbl 0765.35024
[8] DOI: 10.2307/2154960 · Zbl 0840.35010
[9] DOI: 10.1017/S0308210500023374 · Zbl 0865.35073
[10] DOI: 10.1137/S0036141095286733 · Zbl 0870.35128
[11] DOI: 10.1002/cpa.3160450903 · Zbl 0801.35045
[12] Giga M.-H., Dynamical Systems and Differential Equations 1 pp 276– (1998)
[13] Giga Y., Quart. Appl. Math. pp 727– (1996) · Zbl 0862.35047
[14] DOI: 10.1007/BF03167395 · Zbl 1306.74038
[15] DOI: 10.1007/s002110050017 · Zbl 0791.65063
[16] DOI: 10.1142/S0218202593000369 · Zbl 0802.65124
[17] Nochetto R. H., Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) pp 193– (1994)
[18] DOI: 10.1137/S0036139995279901 · Zbl 0870.35129
[19] DOI: 10.1090/S0002-9904-1978-14499-1 · Zbl 0392.49022
[20] Taylor J. E., Pitman Monographs in Pure and Applied Math. 52 pp 321– (1991)
[21] DOI: 10.1016/0956-7151(92)90091-R
[22] DOI: 10.1090/pspum/054.1/1216599
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.