×

zbMATH — the first resource for mathematics

A polynomial method based on Fejér points for the computation of functions of unsymmetric matrices. (English) Zbl 1016.65023
A polynomial method based on interpolation at the Fejér points is introduced to compute the product of functions of large unsymmetric matrices by vectors. Detailed error analysis is given, some practical examples and numerical experiments are shown.

MSC:
65F30 Other matrix algorithms (MSC2010)
15A24 Matrix equations and identities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bergamaschi, L.; Vianello, M., Efficient computation of the exponential operator for large, sparse, symmetric matrices, Numer. linear algebra appl., 7, 27-45, (2000) · Zbl 0983.65058
[2] Driscoll, T.A., Algorithm 756: A MATLAB toolbox for schwarz – christoffel mapping, ACM trans. math. software, 22, 168-186, (1996) · Zbl 0884.30005
[3] Druskin, V.; Greenbaum, A.; Knizherman, L., Using nonorthogonal Lanczos vectors in the computation of matrix functions, SIAM J. sci. comput., 19, 38-54, (1998) · Zbl 0912.65021
[4] Druskin, V.; Knizherman, L., Two polynomial methods for calculating functions of symmetric matrices, USSR comput. math. math. phys., 29, 112-121, (1989) · Zbl 0719.65035
[5] Druskin, V.; Knizherman, L., Extended Krylov subspaces: approximation of the matrix square root and related functions, SIAM J. matrix anal. appl., 19, 755-771, (1998) · Zbl 0912.65022
[6] Eiermann, M., On semiiterative methods generated by Faber polynomials, Numer. math., 56, 139-156, (1989) · Zbl 0678.65020
[7] Eiermann, M., Fields of values and iterative methods, Linear algebra appl., 180, 167-197, (1993) · Zbl 0784.65022
[8] Eiermann, M.; Niethammer, W.; Varga, R.S., A study of semiiterative methods for nonsymmetric systems of linear equations, Numer. math., 47, 505-533, (1985) · Zbl 0585.65025
[9] Elman, H.C.; Saad, Y.; Saylor, P.E., A hybrid Chebyshev Krylov subspace algorithm for solving nonsymmetric systems of linear equations, SIAM J. sci. statist. comput., 7, 840-855, (1986) · Zbl 0613.65031
[10] Gallopoulos, E.; Saad, Y., Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. sci. statist. comput., 13, 1236-1264, (1992) · Zbl 0757.65101
[11] Gantmacher, F.R., The theory of matrices. vol. 1 (K.A. Hirsch, trans.), (1998), American Mathematical Society Providence, RI, (Reprint of the 1959 Russian translation) · Zbl 0927.15001
[12] Hochbruck, M.; Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. numer. anal., 34, 1911-1925, (1997) · Zbl 0888.65032
[13] Householder, A.S., The theory of matrices in numerical analysis, (1964), Blaisdell New York · Zbl 0161.12101
[14] Knizherman, L., Calculation of functions of unsymmetric matrices using Arnoldi’s method, USSR comput. math. math. phys., 31, 1-9, (1991) · Zbl 0774.65021
[15] Kovari, T.; Pommerenke, C., On Faber polynomials and Faber expansions, Math. Z., 99, 193-206, (1967) · Zbl 0197.05505
[16] Manteuffel, T.A., The tchebychev iteration for nonsymmetric linear systems, Numer. math., 28, 307-327, (1977) · Zbl 0361.65024
[17] Manteuffel, T.A.; Starke, G., On hybrid iterative methods for nonsymmetric systems of linear equations, Numer. math., 73, 489-506, (1996) · Zbl 0864.65014
[18] Moret, I.; Novati, P., An interpolatory approximation of the matrix exponential based on Faber polynomials, J. comput. app. math., 131, 361-380, (2001) · Zbl 0983.65057
[19] Moret, I.; Novati, P., The computation of functions of matrices by truncated Faber series, Numer. funct. anal. optim., 22, 697-719, (2001) · Zbl 0992.65010
[20] P. Novati, Polynomial methods for the computation of functions of large unsymmetric matrices, Ph.D. Thesis, Università degli Studi di Padova, 2000
[21] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. numer. anal., 29, 209-228, (1992) · Zbl 0749.65030
[22] Smirnov, V.I.; Lebedev, N.A., Functions of a complex variable. constructive theory (scripta technica ltd., trans.), (1968), Iliffe London · Zbl 0164.37503
[23] Spijker, M.N., Numerical ranges and stability estimates, Appl. numer. math., 13, 241-249, (1993) · Zbl 0789.65060
[24] Starke, G.; Varga, R.S., A hybrid arnoldi – faber iterative method for nonsymmetric systems of linear equations, Numer. math., 64, 213-240, (1993) · Zbl 0795.65015
[25] Tal-Ezer, H., Spectral methods in time for hyperbolic equations, SIAM J. numer. anal., 23, 11-26, (1986) · Zbl 0613.65091
[26] Tal-Ezer, H., Spectral methods in time for parabolic problems, SIAM J. numer. anal., 26, 1-11, (1989) · Zbl 0668.65090
[27] Trefethen, L.N., Numerical computation of the schwarz – christoffel transformation, SIAM J. sci. statist. comput., 1, 82-102, (1980) · Zbl 0451.30004
[28] Walsh, J.L., Interpolation and approximation by rational functions in the complex domain, Amer. math. soc. colloq. publ., 20, (1965), American Mathematical Society Providence, RI
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.