×

zbMATH — the first resource for mathematics

The variational multiscale method – a paradigm for computational mechanics. (English) Zbl 1017.65525

MSC:
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
74S25 Spectral and related methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baiocchi, C.; Brezzi, F.; Franca, L.P., Virtual bubbles and the Galerkin/least-squares method, Comput. methods in appl. mech. and engrg., 105, 125-142, (1993) · Zbl 0772.76033
[2] Brezzi, F.; Franca, L.P.; Hughes, T.J.R.; Russo, A., b = ∝ g, comput. methods in appl. mech. and engrg., 145, 329-339, (1997)
[3] Brezzi, F.; Russo, A., Choosing bubbles for advection-diffusion problems, Math. models methods appl. sci., 571-587, (1994) · Zbl 0819.65128
[4] Douglas, J.; Wang, J.P., An absolutely stabilized finite element method for the Stokes problem, Math. comput., 52, 495-508, (1989) · Zbl 0669.76051
[5] Franca, L.P.; Russo, A., Approximation of the Stokes problem by residual-free macro bubbles, East-west J. numer. anal., 4, 265-278, (1996) · Zbl 0869.76038
[6] Franca, L.P.; Russo, A., Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles, Appl. math. lett., 9, 83-88, (1996) · Zbl 0903.65082
[7] Franca, L.P.; Russo, A., Mass lumping emanating from residual-free bubbles, Comput. methods appl. mech. engrg., 142, 353-360, (1997) · Zbl 0883.65086
[8] Franca, L.P.; Russo, A., Unlocking with residual-free bubbles, Comput. methods in appl. mech. engrg., 142, 361-364, (1997) · Zbl 0890.73064
[9] Franca, L.P.; Hughes, T.J.R.; Stenberg, R., Stabilized finite element methods for the Stokes problem, (), 87-107 · Zbl 1189.76339
[10] Hughes, T.J.R., Multiscale phonomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. methods appl. mech. engrg., 127, 387-401, (1995) · Zbl 0866.76044
[11] Hughes, T.J.R.; Franca, L.P., A new finite element formulation for computational fluid dynamics. VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. methods appl. mech. engrg., 65, 85-96, (1987) · Zbl 0635.76067
[12] Hughes, T.J.R.; Hulbert, G.M., Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. methods appl. mech. engrg., 66, 339-363, (1988) · Zbl 0616.73063
[13] Hughes, T.J.R.; Stewart, J., A space-time formulation for multiscale phenomena, J. comput. appl. math., 74, 217-229, (1996) · Zbl 0869.65061
[14] Hulbert, G.M.; Hughes, T.J.R., Space-time finite element methods for second-order hyperbolic equations, Comput. methods appl. mech. engrg., 84, 327-348, (1990) · Zbl 0754.73085
[15] Jansen, K.; Whiting, C.; Collis, S.; Shakib, F., A better consistency for low-order stabilized finite-element methods, (1997), Preprint
[16] Oberai, A.A.; Pinsky, P.M., A multiscale finite element method for the Helmholtz equation, Comput. methods appl. mech. engrg., 154, 281-297, (1998) · Zbl 0937.65119
[17] Russo, A., Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 132, 335-343, (1996) · Zbl 0887.76038
[18] Russo, A., A posteriori error estimators via bubble functions, Math. models methods appl. sci., 6, 33-41, (1996) · Zbl 0853.65109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.