×

zbMATH — the first resource for mathematics

On the relation between different parametrizations of finite rotations for shells. (English) Zbl 1017.74069
Summary: We present interrelations between different finite rotation parametrizations for geometrically exact classical shell models (i.e. for models without drilling rotation). In these models the finite rotations are unrestricted in size but constrained in the thee-dimensional space. In the finite element approximation we use interpolation that restricts the treatment of rotations to the finite element nodes. Mutual relationships between different parametrizations are established and presented in commutative diagrams. The advantages and drawbacks of different parametrizations are discussed, and the finite rotation terms arising in the linearization are given in explicit form.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0045-7825(82)90069-X · Zbl 0505.73064 · doi:10.1016/0045-7825(82)90069-X
[2] DOI: 10.1016/S0020-7683(96)00121-7 · Zbl 0944.74577 · doi:10.1016/S0020-7683(96)00121-7
[3] DOI: 10.1016/S0045-7825(97)00158-8 · Zbl 0947.74060 · doi:10.1016/S0045-7825(97)00158-8
[4] DOI: 10.1007/BF00350723 · Zbl 0848.73060 · doi:10.1007/BF00350723
[5] DOI: 10.1002/(SICI)1097-0207(19970228)40:4<689::AID-NME85>3.0.CO;2-7 · Zbl 0892.73055 · doi:10.1002/(SICI)1097-0207(19970228)40:4<689::AID-NME85>3.0.CO;2-7
[6] DOI: 10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B · Zbl 0926.74071 · doi:10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B
[7] DOI: 10.1002/nme.1620340105 · Zbl 0760.73041 · doi:10.1002/nme.1620340105
[8] DOI: 10.1115/1.3601208 · doi:10.1115/1.3601208
[9] DOI: 10.1002/nme.1620350105 · Zbl 0780.73075 · doi:10.1002/nme.1620350105
[10] DOI: 10.1108/eb023562 · doi:10.1108/eb023562
[11] DOI: 10.1108/02644409410799209 · doi:10.1108/02644409410799209
[12] DOI: 10.1016/0045-7825(94)90003-5 · Zbl 0849.73036 · doi:10.1016/0045-7825(94)90003-5
[13] DOI: 10.1016/S0045-7825(97)00059-5 · Zbl 0924.73110 · doi:10.1016/S0045-7825(97)00059-5
[14] DOI: 10.1115/1.3101701 · doi:10.1115/1.3101701
[15] DOI: 10.1002/(SICI)1097-0207(19980315)41:5<781::AID-NME308>3.0.CO;2-9 · Zbl 0902.73045 · doi:10.1002/(SICI)1097-0207(19980315)41:5<781::AID-NME308>3.0.CO;2-9
[16] DOI: 10.1002/nme.247 · Zbl 1112.74420 · doi:10.1002/nme.247
[17] DOI: 10.1002/nme.1620382107 · Zbl 0835.73074 · doi:10.1002/nme.1620382107
[18] DOI: 10.1002/nme.1620310108 · Zbl 0825.73783 · doi:10.1002/nme.1620310108
[19] DOI: 10.1002/nme.1620340107 · Zbl 0760.73043 · doi:10.1002/nme.1620340107
[20] DOI: 10.1016/0045-7825(89)90002-9 · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[21] DOI: 10.1016/0045-7825(86)90079-4 · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[22] DOI: 10.1016/0045-7825(90)90094-3 · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.