zbMATH — the first resource for mathematics

Global solutions in tree dimensions for systems describing a chemotaxis phenomenon. (English) Zbl 1017.92005
From the introduction: We call chemotaxis the movement of a population under the influence of the chemical substances produced by this very population. This phenomenon appears, for example, when amoebas head through the slime towards the high concentration of a chemical substance they have secreted, called cyclic AMP. From the initial situation two phenomena can arise: either an excessive concentration of the population appears in some places or a homogeneous balance of cells develops. In this article we are interested in the mathematical study of the second effect for a parabolic-elliptic system describing this movement. The system we consider comes from the Keller and Segel model [see E. F. Keller and L. A. Segel, J. Theor. Biol. 30, 225-264 (1971)].
The following parabolic-elliptic system is generally introduced: \[ \begin{cases} \partial u/\partial t-d_1\Delta u=-\text{div} \bigl(u\nabla \psi(a) \bigr) \quad & \text{on }(0,+\infty) \times\Omega,\\ -\Delta a=\alpha (u-\overline u_0)\quad & \text{on }(0,+\infty) \times\Omega,\\ d_1(\partial u/ \partial n)-u\partial \psi(a)/ \partial n=0,\;\partial a/\partial n=0\quad & \text{on }(0,+\infty) \times\Gamma,\\ u(0,.)=u_0\quad & \text{on }\Omega, \end{cases} \tag{S} \] where the unknown \(u\) is always the cell density and the unknown \(a\) is translated as the concentration of chemotactic substance such as \(\overline a=0\). The function \(\psi\) always has the above properties and \(\alpha =k_1/d_2\) is a positive constant. Our aim is to determine some conditions leading to the existence and the uniqueness of a time-global solution to the system (S).

92C17 Cell movement (chemotaxis, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI
[1] Alikakos, N.D., L^p bounds of solutions of reaction-diffusion equations, Comm. partial differential equations, 4, 827-868, (1979) · Zbl 0421.35009
[2] Alvino, A.; Lions, P.L.; Trombetti, G., Comparison results for elliptic and parabolic equations via symmetization: A new approach, Differential integral equations, 4, 35-50, (1991)
[3] Bandle, C., Isoperimetric inequalities and applications, (1980), Pitman Boston/London/Melbourne · Zbl 0436.35063
[4] A. Bonami, D. Hilhorst, E. Logak, and, M. Mimura, A chemotaxis-growth model, à paraı̂tre avril, 1995.
[5] A. Bonami, D. Hilhorst, E. Logak, and, M. Mimura, A free boundary problem arising in a chemotaxis model, in, Proceedings de la conférence de Za sur Free Boundary Problem, in press. · Zbl 0869.35115
[6] Biler, P., Global solutions to some parabolic-elliptic systems of chemotaxis, Adv. math. sci. appl., 9, 347-359, (1999) · Zbl 0941.35009
[7] Biler, P., Local and global solvability of some parabolic systems modelling chemotaxis, Adv. math. sci. appl., 8, 715-743, (1998) · Zbl 0913.35021
[8] Boy, A., Analysis for a system of coupled reaction-diffusion parabolic equations arising in biology, Comput. math. appl., 32, 15-21, (1996) · Zbl 0861.35038
[9] A. Boy, Analyse mathématique d’un modèle biologique régi par un système d’équations de réaction-diffusion couplées, Thèse, Université de Pau et des Pays de L’Adour, 1997.
[10] A. Boy-Dalverny, and, M. Madaune-Tort, Blow-up phenomenon and global solution to coupled parabolic-elliptic system of chemotaxis, preprint, No. 099/16, Laboratoire Mathématiques Appliquées UPRES A 5033, Université de Pau et des Pays de L’Adour, 1999. · Zbl 1161.35318
[11] De Giorgi, E., Su una teoria generale Della misura (r−1) dimensionale in uno spaczio ad r dimensioni, Ann. mat. pura appl., 36, 191-213, (1954) · Zbl 0055.28504
[12] Diaz, J.I.; Mossino, J., Isoperimetric inequalities in parabolic obstacle problems, J. math. pures appl., 71, 233-266, (1992) · Zbl 0679.49011
[13] Diaz, J.I.; Nagai, T., Symmetrization in parabolic-elliptic system related to chemotaxis, Adv. math. sci. appl., 5, 659-680, (1995) · Zbl 0859.35004
[14] Diaz, J.I., Simetrización de problemas parabólicos no lineales: aplicación a ecuaciones de reacción-difusión, Rev. real acad. cien. Madrid, (1992) · Zbl 0752.35022
[15] Fleming, W.; Rishel, R., An integral formula for total gradient variation, Arch. math., 11, 218-222, (1960) · Zbl 0094.26301
[16] Gajewski, H.; Zacharias, K., Global behaviour of reaction-diffusion system modelling chemotaxis, Marth. nachr., 159, 77-114, (1998) · Zbl 0918.35064
[17] Herrero, M.A.; Velázquez, J.J.L., Chemotaxis collapse for the keller – segel model, J. math. biol., 35, 177-194, (1996) · Zbl 0866.92009
[18] M. A. Herrero, and, J. J. L. Velázquez, A blow up mechanism for a chemotaxis model, preprint, Departamento de Matemática Aplicada, Universidad Complutense, Madrid, 1992.
[19] Jäger, W.; Luckhaus, S., On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. amer. math. soc., 329, 475-494, (1992) · Zbl 0746.35002
[20] Keller, E.F.; Segel, L.A., Travelling bands of chemotactic bacteria: A theoretical analysis, J. theoret. biol., 30, 235-248, (1971) · Zbl 1170.92308
[21] Keller, E.F.; Segel, L.A., Initiation of slime mold aggregation viewed as an instability, J. theoret. biol., 26, 399-415, (1970) · Zbl 1170.92306
[22] Keller, E.F.; Segel, L.A., Model for chemotaxis, J. theoret. biol, 30, 225-264, (1971) · Zbl 1170.92307
[23] Mossino, J., Inégalités isopérimétriques et applications en physique, (1984), Hermann Paris · Zbl 0537.35002
[24] Mossino, J.; Rakotoson, L.M., Isoperimetric inequalities in parabolic equations, Ann. scuola norm. sup. Pisa, 13, 51-73, (1986) · Zbl 0652.35053
[25] Nagai, T., Blow-up of radially symmetric solutions to chemotaxis systems, Adv. math. sci. appl., 5, 581-601, (1995) · Zbl 0843.92007
[26] Nagai, T.; Senba, T., Behavior of radially symmetric solutions related to chemotaxis, Nonlinear anal., 30, 3813-3842, (1997) · Zbl 0891.35014
[27] Nagai, T.; Senba, T., Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis, Adv. math. sci. appl., 8, 145-156, (1998) · Zbl 0902.35010
[28] Vázquez, J.L., Symétrisation pour u_t=δϕ(u) et applications, C. R. acad. sci. Paris, 295, 71-74, (1982) · Zbl 0501.35015
[29] Nagai, T.; Senba, T.; Yoshida, K., Application of the trudinger – moser inequality to a parabolic system of chemotaxis, Funkcial. ekvac., 40, 411-433, (1997) · Zbl 0901.35104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.