×

Filtered interspike interval encoding by class II neurons. (English) Zbl 1018.92004

Summary: Dynamics of class II neurons, firing frequencies of which are strongly regulated by the inherent neuronal property, have been extensively studied since the formulation of the Hodgkin-Huxley model in 1952. However, how class II neurons process stimulus information and what kind of external information and internal structure firing patterns of neurons represent are vaguely understood in contrast to firing rate coding by class I neurons.
Here we show that the FitzHugh-Nagumo class II neurons simultaneously filter inputs based on the input frequency and represent the signal strength by interspike intervals. In this sense, the class II neuron works as an AM processor that passes the information on the carrier and on the temporal waveform of signals.

MSC:

92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benardo, L. S.; Foster, R. E., Brain Res. Bull., 17, 773 (1986)
[2] Llinás, R.; Yarom, Y., J. Physiol., 376, 163 (1986)
[3] Bragin, A., J. Neurosci., 15, 47 (1995)
[4] Steriade, M.; Timofeev, I.; Dürmüller, N.; Grenier, F., J. Neurophysiol., 79, 483 (1998)
[5] Gutfreund, Y.; Yarom, Y.; Segev, I., J. Physiol., 483, 621 (1995)
[6] Traub, R. D., J. Physiol., 493, 471 (1996)
[7] Gray, C. M.; König, P.; Engel, A. K.; Singer, W., Nature, 338, 334 (1989)
[8] Llinás, R.; Ribary, U., Proc. Natl. Acad. Sci. USA, 90, 2078 (1993)
[9] Aihara, K.; Matsumoto, G., J. Theor. Biol., 95, 697 (1982)
[10] Lu, T.; Liang, L.; Wang, X., Nature Neurosci., 4, 1131 (2001)
[11] Izhikevich, E. M., Int. J. Bifur. Chaos, 10, 1171 (2000)
[12] Sigeti, D.; Horsthemke, W., J. Stat. Phys., 54, 1217 (1989)
[13] Sauer, T., Phys. Rev. Lett., 72, 3811 (1994)
[14] Racicot, D. M.; Longtin, A., Physica D, 104, 184 (1997)
[15] Masuda, N.; Aihara, K., Neural Comput., 14, 1599 (2002)
[16] Abeles, M., Corticonics (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[17] Diesmann, M.; Gewaltig, M.-O.; Aertsen, A., Nature, 402, 529 (1999)
[18] Shadlen, M. N.; Newsome, W. T., J. Neurosci., 18, 3870 (1998)
[19] Mar, D. J.; Chow, C. C.; Gerstner, W.; Adams, R. W.; Collins, J. J., Proc. Natl. Acad. Sci. USA, 96, 10450 (1999)
[20] Masuda, N.; Aihara, K., Phys. Rev. Lett., 88, 248101 (2002)
[21] Masuda, N.; Aihara, K., Neural Comput., 15, 103 (2003)
[22] van Rossum, M. C.W.; Turrigiano, G. G.; Nelson, S. B., J. Neurosci., 22, 1956 (2002)
[23] Longtin, A., Phys. Rev. E, 55, 868 (1997)
[24] Pikovsky, A. S.; Kurths, J., Phys. Rev. Lett., 78, 775 (1997)
[25] Hutcheon, B.; Yarom, Y., Trends Neurosci., 23, 216 (2000)
[26] Izhikevich, E. M., Neural Netw., 14, 883 (2001)
[27] FitzHugh, R., Biophys. J., 1, 445 (1961)
[28] Nagumo, J.; Arimoto, S.; Yoshizawa, S., Proc. IRE, 50, 2061 (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.